期刊论文详细信息
Czechoslovak Mathematical Journal
Some results on the annihilator graph of a commutative ring
Mojgan Afkhami1 
关键词: annihilator graph;    zero-divisor graph;    outerplanar;    ring-graph;    cut-vertex;    clique number;    weakly perfect;    chromatic number;    polynomial ring;    ring of fractions;   
DOI  :  10.21136/CMJ.2017.0436-15
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

  Let $R$ be a commutative ring. The annihilator graph of $R$, denoted by ${\rm AG}(R)$, is the undirected graph with all nonzero zero-divisors of $R$ as vertex set, and two distinct vertices $x$ and $y$ are adjacent if and only if ${\rm ann}_R(xy) \neq{\rm ann}_R(x)\cup{\rm ann}_R(y)$, where for $z \in R$, ${\rm ann}_R(z) = \lbrace r \in R \colon rz = 0\rbrace$. In this paper, we characterize all finite commutative rings $R$ with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings $R$ whose annihilator graphs have clique number $1$, $2$ or $3$. Also, we investigate some properties of the annihilator graph under the extension of $R$ to polynomial rings and rings of fractions. For instance, we show that the graphs ${\rm AG}(R)$ and ${\rm AG}(T(R))$ are isomorphic, where $T(R)$ is the total quotient ring of $R$. Moreover, we investigate some properties of the annihilator graph of the ring of integers modulo $n$, where $n \geq1$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910184355775ZK.pdf 224KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:16次