期刊论文详细信息
Iranian Journal of Pharmaceutical Research
QSAR studying of oxidation behavior of Benzoxazines as an important pharmaceutical property
关键词: Benzoxazines;    Half wave potential;    Artificial neural network;    pharmaceutical property;    Quantitative structure-property relationship;   
DOI  :  
学科分类:社会科学、人文和艺术(综合)
来源: Shaheed Beheshti Medical University * School of Pharmacy
PDF
【 摘 要 】

In this work the electrooxidation half-wave potentials of some Benzoxazines were predicted from their structural molecular descriptors by using quantitative structure-property relationship (QSAR) approaches. The dataset consist the half-wave potential of 40 benzoxazine derivatives which were obtained by DC-polarography. Descriptors which were selected by stepwise multiple selection procedure are: HOMO energy, partial positive surface area, maximum valency of carbon atom, relative number of hydrogen atoms and maximum electrophilic reaction index for nitrogen atom. These descriptors were used for development of multiple linear regression (MLR) and artificial neural network (ANN) models. The statistical parameters of MLR model are standard errors of 0.016 and 0.018 for training and test sets, respectively. Also, these values are 0.012 and 0.017 for training and test sets of ANN model, respectively. The predictive power of these models was further examined by leave-eight-out cross validation procedure. The obtained statistical parameters are Q2= 0.920 and SPRESS= 0.020 for MLR model and Q2= 0.949 and SPRESS= 0.015 for ANN model, which reveals the superiority of ANN over MLR model. Moreover, the results of sensitivity analysis on ANN model indicate that the order of importance of descriptors is: Relative number of H atom > HOMO energy > Maximum electrophyl reaction index for N atom > Partial positive surface area (order-3) > maximum valency of C atom.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904284305328ZK.pdf 712KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:12次