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Abstract 

 

In this work the electrooxidation half-wave potentials of some Benzoxazines were predicted 

from their structural molecular descriptors by using quantitative structure-property relationship 

(QSAR) approaches. The dataset consist the half-wave potential of 40 benzoxazine derivatives 

which were obtained by DC-polarography. Descriptors which were selected by stepwise 

multiple selection procedure are: HOMO energy, partial positive surface area, maximum 

valency of carbon atom, relative number of hydrogen atoms and maximum electrophilic 

reaction index for nitrogen atom. These descriptors were used for development of multiple 

linear regression (MLR) and artificial neural network (ANN) models. The statistical parameters 

of MLR model are standard errors of 0.016 and 0.018 for training and test sets, respectively. 

Also, these values are 0.012 and 0.017 for training and test sets of ANN model, respectively. 

The predictive power of these models was further examined by leave-eight-out cross validation 

procedure. The obtained statistical parameters are Q2 = 0.920 and SPRESS = 0.020 for MLR 

model and Q2 = 0.949 and SPRESS = 0.015 for ANN model, which reveals the superiority of 

ANN over MLR model. Moreover, the results of sensitivity analysis on ANN model indicate 

that the order of importance of descriptors is: Relative number of H atom > HOMO energy > 

Maximum electrophyl reaction index for N atom > Partial positive surface area (order-3) > 

maximum valency of C atom. 

 

Keywords: Benzoxazines; Half wave potential; Artificial neural network; pharmaceutical 

property; Quantitative structure-property relationship. 
 

 

 

 

 

 



Introduction 

 

Benzoxazine is the reaction product of amine, phenol and formaldehyde which can provide 

polymers with high glass transition temperature, low water absorption, excellent physical and 

electrical performances and excellent fire resistance properties (1). One of the interesting features of 

these compounds is the drug properties. These were used as bacteriocides, fungicides, antitumor 

agents, herbicides, microbiocides or anti-inflammatory agents, tyrosine mimetics, bacteriostatic, 

immunomodulating agents, neuroprotective antioxidants and were used as antituberculotic agents in 

various cancer chemotherapy regimens for the treatment of sarcoma and cerebral tumors. (2-10).  

Oxidation reactions played an important role in establishing structures and chemical properties of 

benzoxazines. Since these reactions are the most common pathways at the first phase of drug 

biotransformation. Therefore the electrochemical half wave potential of benzoxazines can be directly 

useful for investigation of their biological properties (11). Drugs with low oxidation potential can 

operate more successfully in the treatment of disease. A common technique in studies of electro-

oxidations of benzoxazines is the voltammetric method (12). This method is the electrochemical 

technique. Since generation and examination of new drugs based on benzoxazine and its investigation 

by the voltammetric method is limited in time and cost (13) therefore, the development of theoretical 

model to predict the properties of these compounds are interesting and necessary. Quantitative 

structure activity relationship (QSAR) methods enable in prediction and interpretation of the 

properties and activities of a wide range of drugs and organic compounds based on the correlation 

between their properties and molecular characteristics (molecular descriptors) (14-18). There are 

some reports about the applications of QSPR/QSAR in electrochemistry (19-22). Wei et al. studied 

the relationship between the reduction characteristics and molecular structure of 87 chlorinated 

aromatics, such as naphthalenes, biphenyls, benzenes and phenols (19). Shamsipur and 

Hemmateenejad employed principle component regression (PCR) and principle component artificial 

neural network (PC-ANN) models in QSPR study of E1/2 of some organic compounds. Their best PC- 

ANN model can explain the 96% of variances in the E1/2 data (22). Fatemi et al. applied support 

vector machine (SVM) for the prediction of selectivity coefficients of anion-selective electrode for 

some univalent anions. The calculated root-mean-square errors of SVM for training and test set of 

their model are: 0.878 and 0.890 respectively. The correlation coefficients of training and test set are: 

0.95 and 0.94, respectively. Also the obtained statistical parameters of cross-validation test on SVM 

model were: Q
2
 = 0.858 and SPRESS = 1.050, which revealed the reliability of their model (23). 

Gallegos et-al. developed some models to predict the logarithm of minimum inhibitory concentration 

(log MIC) of a subset of 39 substituted benzoxazines using a quantum molecular similarity approach 

(24). Nesmerak et al. was used Hammet substitutent constants (25) for calculation of half-wave 

potentials for 40 benzoxazine (20). Toropov et-al. calculated optimal descriptors with simplified 



molecular input line entry system (SMILES) notation of same Nesmerek group chemicals (26) and 

used QSPR modeling to calculate the electrochemical half-wave potentials of these compound (26).  

In the present work, we tried to predict the half-wave potential of some benzoxazine derives from 

their molecular descriptors by using artificial neural network (ANN) and multiple linear regression 

(MLR) techniques.  

 

Experimental  

 

Software 

The 3D structures of the studied compounds were optimized using semi-empirical quantum-

chemical methods of AM1 in HyperChem (Ver.7) package (27). The structural descriptors are 

numerical values that encode structural features of the molecular structures.  In the present work, the 

CODESSA software was used to calculate 393 constitutional, topological and geometrical descriptors 

(28). Then heuristic method (HM) was used to search the best set of descriptors for multilinear 

correlations (29).   

Artificial neural networks are mathematical systems that simulate biological neural networks (30-

32). They consist of processing elements (nodes or neurons) which organized in some layers. Back-

propagation neural networks are most often used in analytical applications. The back-propagation 

network receives a set of inputs, which are multiplied by each node and then a nonlinear transfer 

function is applied for their processing. The goal of training the network is to change the weights 

between the layers in a direction to minimize the output errors. More details about the theory of the 

neural networks have been adequately described in many literatures (32-38). The ANN programs 

were written in FORTRAN 77 in our laboratory. A three-layer network with a sigmoid transfer 

function was design for each ANN. The generated artificial neural network uses descriptors selected 

by HM as inputs. The number of nodes in the input layer is dependent on the number of descriptors 

introduced in the network. The number of nodes in the output layer for both subsets (training and test 

sets) was set to be one. The inputs and outputs values of ANN were normalized between 0.1 and 0.9. 

The initial weights were selected randomly between −0.3 and 0.3. The number of nodes in the hidden 

layers, learning rate, and momentum would be optimized before training the network. During the 

training of ANN, the values of weights and biases continuously changed to minimize the differences 

between ANN outputs and desired activity/property values, using the back propagation of errors. In 

order to evaluate the performance of the ANN, the standard error of training (SET) and the standard 

error of prediction (SEP) were used. The training iteration was stopped at overtraining point, where 

SEP is started to increase. Then the trained network was used to calculation the E1/2 values of test set. 

In order to further investigation of the credibility of obtained ANN model leave-eight-out cross 

validation method was used. Finally, the sequential zeroing weight (SZW) approach was used for 

evaluation of the relative importance of selected molecular descriptors. 



Dataset and Molecular descriptors 

New groups of antimycobacterial agents that were studied in the present work as dataset are 

derivatives of benzoxazine which their half-wave potentials were obtained from reference (20). The 

electrochemical measurements on these compounds were performed by an EKO-Tribo Polarograph. 

The reference electrode was a silver plate which immersed in a solution of acetonitrile that consists 

0.01M of AgNO3 and 1M of NaClO4. The chemical structures and experimental oxidation half-wave 

potential of these compounds are shown in Figure 1 and Table 1. The 3D structures of the studied 

compounds were optimized using semi-empirical quantum-chemical methods of AM1. The data set 

was separated into two groups: training and test sets. All molecules were placed by Y-ranking method 

in these sets. The training set, consisted of 35 molecules, was used for the model generation and the 

test set, consisted of 5 molecules, was used to take care of the overtraining and evaluate the prediction 

power of the generated model. 

 

Data screening and descriptor selection 

The CODESSA software was used to calculate constitutional, topological and geometrical 

descriptors. Then heuristic method (HM) was used to search the best set of descriptors for multilinear 

correlations. In the first step of this method, descriptors with constant values for all molecules were 

eliminated from the pool of descriptors. Also, pairs of variables with a correlation coefficient greater 

than 0.90 were classified as intercorrelated variables, and only one of them was used in developing 

the model. In deleting one descriptor from one pair of correlated descriptors we tried to keep 

descriptor which has these criteria: 1) has the higher correlation with independent variable (half wave 

oxidation potential), 2) its calculation is simpler and easier, 3) has more information about interested 

activity/properties, 4) is more interpretable. At the end of this step  total of 284 descriptors were 

reminded to further investigations.  

A major decision in developing successive QSPR model is when to stop adding descriptors to the 

model during the forward selection procedure. A simple technique to control the model expansion is 

the „break-point‟ procedure (39). In this method, improvement of the statistical quality of the models 

is analyzed by plotting the squared correlation coefficient values (R
2
) of the obtained models versus 

the number of descriptors involved in each model. Consequently, the model corresponding to the 

break point is considered as the best/optimum model.  

Thus, HM procedure was applied to the training set and multilinear regression equations of up to 

16 descriptors were developed. Variations of R
2
 against the number of descriptors in the models were 

recorded and are shown in Figure 2. The application of the break-point algorithm led to the conclusion 

that the best model had five parameters. The specifications of this model w shown in Table 2. Then 

the artificial network was used to calculation the E1/2 values of training and test set, respectively. Also, 

in order to further investigation of the credibility of obtained ANN model leave-8-out cross validation 



method was used. Finally, the sequential zeroing weight (SZW) approach was used for evaluation of 

the relative importance of selected molecular descriptors. 

 

 

Result and discussion 

 

Molecular diversity validation 

Diversity is a fundamental research subject in chemical database analysis of sampling (40). 

Molecular diversity analysis explores the way of molecules to cover a determined structural space and 

underlies many approaches for compound selection and design of combinatorial libraries. The 

diversity problem involves defining a diverse subset of “representative” compounds so that 

researchers can scan only a subset of the huge database each time.  Therefore, the choice of an 

optimal metric space that represents the structural diversity of a compound population is determinant 

in the efficiency of the model (38, 41). In this work, diversity analysis was done for the data set to 

make sure the structures of the training or test sets could represent those of the whole ones. 

For a database of n compounds generated from m highly correlated chemical descriptors, a 

distance score (dij) for two compounds Xi and X j can be measured by the Euclidean distance norm 

based on the compounds descriptors:                                                                                      
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Each compound Xi is represented as a vector: 

Xi = (xi1, xi2, xi3, . . . , xim)
T 

 for i = 1, 2, . . . , n 

 

where xi j denotes the value of descriptor j of compound Xi and T indicates vector transposition. 

The mean distances ( ) of one sample to the remaining ones were computed as follow: 
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Then the mean distances were normalized within the interval (0, 1). In our data sets, the mean 

distances of samples versus oxidation half-wave potential are plotted in Figure 3. The distribution of 

points in this figure illustrates the diversity of the molecules in the training and test sets. As can be 



seen from this figure, the structures of compounds are diverse in the training and test sets. The 

training set with a broad representation was adequate to ensure model stability.  

 

Linear modeling 

The SPSS software (Ver. 14) was used to developing many MLR models (43). The best model was 

selected based on the statistics of correlation coefficient (R), standard error (SE) and Fisher-statistics 

value (F). Consequently, among different models, the five-parameter model was chosen based on the 

break point procedure. Descriptors which were selected by this method are: high occupied molecular 

orbital energy(HOMO), partial positive surface area, maximum valency of carbon atom, relative 

number of hydrogen atoms and maximum electrophilic reaction index for nitrogen atom that have 

shown in Table 2.  

Multicollinearity for the selected parameters (descriptors) was also checked and its result was 

presented in Table 3. As can be seen in this table there are not any high correlation between these 

descriptors. Then the MLR model was used to calculate of E1/2 for test set as well as training set. The 

MLR predicted values of E1/2 were shown in Table 1. Finally, the leave 8-out cross-validation (L8O) 

was used to evaluate credibility and robustness of these models. The statistical parameters of this test 

were shown in Table 4. Other statistical parameters of MLR model are: average error = 0.0002, 

relative error = 0.0022 and absolute error = 0.0102, respectively. 

 

Non-linear modeling 

A three-layer network with a sigmoid transfer function was designed for ANN model. The network 

was trained using the training set by the back propagation strategy for optimization of the weights and 

bias values. To obtain the best result the weight and bias learning rate and momentum value as well as 

ANN‟s topology were optimized. The procedure for optimization of ANN‟s parameters is given 

elsewhere (37, 38). The optimized values of these terms and ANN characteristics are given in Table 5. 

Then the constructed ANN model was used to calculate the E1/2 for test set as well as training set. The 

predicted values of E1/2 by ANN model were shown in Table 1. Moreover, the leave-8-out cross-

validation (L8O) was used to evaluate the credibility and robustness of the ANN model. The 

statistical parameters of this test were shown in Table 4. Other statistical parameters of ANN model 

are, average error = 0.0046, relative error = 0.0040 and absolute error = 0.0137, respectively. In 

comparison whit MLR statistical parameters and other statistical values in Table 4, it can be seem that 

the performance of ANN model was better than MLR ones. Figure 4 indicates the variation of ANN 

predicted against experimental values of E1/2 that the agreement between the predicted and 

experimental values is clear (R (training set) =0.0983 and R (test set) =0.971). Also, the residual values 

between ANN predicted and experimental values of half-wave electrooxidation potential of 

benzoxazines were traced in Figure 5.  



The random distribution of residuals about zero line confirms that there is no systematically error 

in developed ANN model. To verify the chemical domain of the consensus model and the distribution 

of the studied chemicals in this new multidimensional space, the chemicals are plotted in a principal 

components 3D-graph (Figure 6), which was obtained by applying PCA on all molecular descriptors 

used by these models. This PCA plot shows that chemicals have fine distribution in the molecular 

descriptors domain. 

 

Sensitivity analysis and descriptor interpretation 

By interpreting selected descriptors in the ANN model, it is possible to gain some insight into the 

factors that are likely to govern the E1/2 of benzoxazines. Here, a brief interpretation of these factors in 

order to determine the relative importance of each variable is given based on the results of sensitivity 

analysis. The procedure of this approach is based on the sequential removal of variables by zeroing 

the specific connection weights for that specific input variable in the first layer of the ANN (44). For 

each sequentially zeroed input variable, root mean square error of prediction set (RMSEP) as the 

prediction error of this network was calculated. Generally RMSEP value increases in this way. Then, 

differences between RMSEP and root mean square error of established ANN (RMSE) was calculated 

and shown as DRMSE. Each variable which causes greater value of DRMSE is more important. The 

DRMSE values are shown for each descriptor in Figure 7. As the mentioned earlier, five descriptors 

were used for ANN model to comprise:  relative number of H atom, HOMO energy, maximum 

electrophyl reaction index for N atom, partial positive surface area (order-3), maximum valency of C 

atom that belonging for constitutional, quantum chemical and charge descriptors and encode 

electronic aspects of the molecular structure. The order of importance of descriptors is: Relative 

number of H atom > HOMO energy > Maximum electrophyl reaction index for N atom > Partial 

positive surface area (order-3) > maximum valency of C atom. 

First important descriptor in the model is relative number of H atom that is a simple constitutional 

type descriptor. This factor indicates the size of molecules as well as the degree of saturation of 

molecule. The second one is the highest occupied molecular orbital energy which is belonging to 

quantum chemical descriptors and determines the needed energy to drawing the electron in oxidation 

process (45). Molecule with high HOMO energy values can donate its electron more easily than the 

molecule with lower HOMO value, and hence is more reactive (26). Next descriptor is maximum 

electrophylic reaction index for N atom that is the quantum chemical descriptor too. This index 

provides feasible chemical interaction with electrophilic attack as electron affinity (46) and is 

important in molecular properties and reactivity in particular for radical reactions.  

The forth descriptor is partial positive surface area (order-3) which is a charge descriptor and 

contains the electronic and structural information of molecule (46). This descriptor encodes the 

solvent accessible surface area of molecule in electrochemical reaction, and can well estimate the 

absolute hardness and can affect on electrooxidation of benzoxazines. The last descriptor is maximum 



valency of C atom. This parameter is a charge type descriptor which can affect on electron affinity of 

the molecule and therefore can correlate to the E1/2 of a molecule. Thus these descriptors can encode 

different aspects of molecules which can effect on their E1/2 values. 

 

Conclusion 

 

The obtained results indicate that QSPR approaches can be used to predict the electrooxidation 

half-wave potentials of benzoxazine derivatives from their structural molecular descriptors. Also, 

comparison between statistical parameters of ANN and MLR models indicates that the ANN model 

produces better results due to non-linear characteristic of ANN. Finally, total descriptors which were 

appeared in this model can encode features of molecules which were responsible in electrooxidation 

characteristics of these molecules.  
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Table 1. Structures, experimental, MLR and ANN-predicted values of oxidation half-wave 

Derivate X R1 R2 E(1/2)-Exp
 E(1/2)-

MLR 
E(1/2)-ANN

 

1 O 7-OCH3  1.420 1.413 1.419 

2 O 7-OCH3 4-F 1.430 1.434 1.424 

3 O 7-OCH3 4-Br 1.440 1.465 1.453 

4 O 7-OCH3 3-F 1.445 1.458 1.441 

5 O 7-OCH3 3-Cl 1.450 1.461 1.447 

6 O 7-CH3 4-CH3 1.415 1.412 1.418 

7 O 6-CH3 4-CH3 1.420 1.416 1.423 

8
T 

O  4-Br 1.490 1.522 1.533 

9 O 6-OCH3 4-CH3 1.450 1.425 1.433 

10 O 6-OCH3 4-F 1.460 1.480 1.460 

11 O 6-OCH3 4-Br 1.465 1.487 1.474 

12 O 6-OCH3 4-Cl 1.470 1.487 1.473 

13 O 6-OCH3 3-F 1.480 1.481 1.462 

14 O 6-OCH3 4-CN 1.510 1.516 1.512 

15 O 6-Cl  1.530 1.525 1.535 

16 O 6-Cl 3-Cl 1.590 1.589 1.591 

17 S 7-OCH3 4-CH3 1.280 1.312 1.309 

18 S 7-OCH3  1.315 1.323 1.318 

19 S 7-OCH3 4-F 1.350 1.348 1.366 

20 S 7-OCH3 4-Br 1.360 1.378 1.359 

21 S 7-OCH3 4-Cl 1.370 1.368 1.362 

22 S 7-OCH3 3-F 1.390 1.363 1.376 

23
T 

S 7-OCH3 3-Cl 1.395 1.370 1.364 

24 S 7-OCH3 4-CF3 1.405 1.433 1.430 

25
T 

S 7-OCH3 3,4-Cl2 1.420 1.417 1.408 

26 S 7-CH3 4-CH3 1.305 1.323 1.308 

27
T 

S 6-CH3 4-CH3 1.320 1.328 1.308 



T: denotes the test set.                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28 S  4-Br 1.420 1.449 1.428 

29 S 6-OCH3 4-CH3 1.330 1.336 1.326 

30 S 6-OCH3  1.360 1.353 1.350 

31 S 6-OCH3 4-F 1.380 1.395 1.403 

32 S 6-OCH3 4-Br 1.400 1.406 1.408 

33 S 6-OCH3 4-Cl 1.400 1.402 1.402 

34 S 6-OCH3 3-F 1.410 1.399 1.407 

35 S 6-OCH3 3-Cl 1.430 1.405 1.404 

36 S 6-OCH3 4-CF3 1.440 1.455 1.451 

37
T 

S 6-OCH3 3,4-Cl2 1.445 1.451 1.444 

38 S 6-OCH3 4-CN 1.450 1.437 1.438 

39 S 6-Cl  1.420 1.443 1.420 

40 S 6-Cl 3-Cl 1.520 1.498 1.503 



 

 

Table 2. Specification of multiple linear regression model 

Name of descriptors Symbol Coefficient SE Mean effect 

Relative number of H atom X1 -0.13 ±0.027 -0.796 

Partial positive surface area(order-3) X2 -0.1 ±0.004 -0.086 

Maximum electrophyl reaction index for N atom X3 0.023 ±0.002 0.075 

HOMO energy X4 -0.079 ±0.051 1.010 

Maximum valency of C atom X5 2.298 ±1.012 8.880 

Constant  -7.903 ±3.65  

n =35, R =0.97, SE = 0.016, F =512  

 

 

 

 

 

 

Table  3. Internal correlation matrix between molecular descriptors 

 X1 X2 X3 X4 X5 

X1 1.000 0.255 0.075 0.650 0.670 

X2  1.000 -0.027 -0.010 -0.163 

X3   1.000 -0.352 0.009 

X4    1.000 0.253 

X5     1.000 

 

 

 



 

 

Table  4. The statistical results of ANN and MLR models 

Models   Training set  Test set  Cross-validation Test 

  R SE  R SE 
 

Q
2 

SPRESS 

ANN  0.983 0.012  0.971 0.017  0.949 0.015 

MLR  0.969 0.016  0.970 0.018  0.920 0.020 

R, SE, Q
2
 and SPRESS are regression coefficient, standard error, correlation coefficient of cross validation and 

square of predictive error sum of squares respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table  5. Architecture of ANN 

Transfer Function Sigmoidal 

No. of Hidden Layer Nods 2 

Weight Learning Rate 0.2 

Bias  Learning Rate 0.6 

Momentum 0.3 

No. of Input Layer Nods 5 

No. of Output Layer Nods 1 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1. Plot of R2 for the obtained models versus the number of descriptors involved. 
 

 

 

 

 

 

 

 

 

 

 

Figure 2. Scatter plot of samples for training and test sets according to the mean distances 

distribution. 
 

 



 

 

 

Figure 3. Calculated. E1/2 versus Experimental E1/2 plot. 

 

 

 

 

 

 

Figure 4. Residual versus Experimental E1/2 plot. 



 

 

Figure 5. Principal component analysis on the selected molecular descriptors for the 

consensus model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Sensitivity analysis results. 
 


