期刊论文详细信息
Statistical Analysis and Data Mining
Random survival forests for high‐dimensional data
Udaya B. Kogalur1  Andy J. Minn1  Xi Chen4  Hemant Ishwaran4 
[1] 01, Cleveland Clinic, Cleveland OH 44195;6848;Dept of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232‐Dept of Quantitative Health Sciences JJN3‐Dept of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104
关键词: forests;    maximal subtree;    minimal depth;    trees;    variable selection;    VIMP;   
DOI  :  10.1002/sam.10103
学科分类:社会科学、人文和艺术(综合)
来源: John Wiley & Sons, Inc.
PDF
【 摘 要 】

Abstract Minimal depth is a dimensionless order statistic that measures the predictiveness of a variable in a survival tree. It can be used to select variables in high-dimensional problems using Random Survival Forests (RSF), a new extension of Breiman's Random Forests (RF) to survival settings. We review this methodology and demonstrate its use in high-dimensional survival problems using a public domain R-language package randomSurvivalForest. We discuss effective ways to regularize forests an.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201904043896074ZK.pdf 49KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:12次