期刊论文详细信息
| Statistical Analysis and Data Mining | |
| Random survival forests for high‐dimensional data | |
| Udaya B. Kogalur1  Andy J. Minn1  Xi Chen4  Hemant Ishwaran4  | |
| [1] 01, Cleveland Clinic, Cleveland OH 44195;6848;Dept of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232‐Dept of Quantitative Health Sciences JJN3‐Dept of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 | |
| 关键词: forests; maximal subtree; minimal depth; trees; variable selection; VIMP; | |
| DOI : 10.1002/sam.10103 | |
| 学科分类:社会科学、人文和艺术(综合) | |
| 来源: John Wiley & Sons, Inc. | |
PDF
|
|
【 摘 要 】
Abstract Minimal depth is a dimensionless order statistic that measures the predictiveness of a variable in a survival tree. It can be used to select variables in high-dimensional problems using Random Survival Forests (RSF), a new extension of Breiman's Random Forests (RF) to survival settings. We review this methodology and demonstrate its use in high-dimensional survival problems using a public domain R-language package randomSurvivalForest. We discuss effective ways to regularize forests an.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201904043896074ZK.pdf | 49KB |
PDF