American Journal of Translational Research | |
Molecular genetics of hepatocellular neoplasia | |
Shilpa Jain1  | |
关键词: Molecular genetics; liver cancer; hepatocellular carcinoma; HSP70; CAP2; glypican 3; glutamine synthetase; β; -catenin; | |
DOI : | |
学科分类:医学(综合) | |
来源: e-Century Publishing Corporation | |
【 摘 要 】
Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the third leading cause of cancer deaths worldwide. Proper classification and early identification of HCC and precursor lesions is essential to the successful treatment and survival of HCC patients. Recent molecular genetic, pathologic, and clinical data have led to the stratification of hepatic adenomas into three subgroups: those with mutant TCF1/HNF1 α gene, those with mutant β-catenin, and those without mutations in either of these loci. Hepatic adenomas with α-catenin mutations have a significantly greater risk for malignant transformation in comparison with the other two subgroups. Telangiectatic focal nodular hyperplasia has now been reclassified as telangiectatic adenoma due to the presence of non-random methylation patterns, consistent with the monoclonal origin which is similar to hepatic adenoma and HCC. HCC precursor lesions demonstrate unique molecular alterations of HSP70, CAP2, glypican 3, and glutamine synthetase that have proven useful in the histologic diagnosis of early HCC. Though specific genetic alterations depend on HCC etiology, the main proteins affected include cell membrane receptors (in particular tyrosine kinase receptors) as well as proteins involved in cell signaling (specifically Wnt/beta-catenin, Ras/Raf/MEK/ERK and PI3K/Akt/mTOR pathways), cell cycle regulation (i.e. p53, p16/INK4, cyclin/cdk complex), invasiveness (EMT, TGF-β) and DNA metabolism. Advances in gene expression profiling have provided new insights into the molecular genetics of HCC. HCCs can now be stratified into two clinically relevant groups: Class A, the low survival subclass (overall survival time 30.3± 8.02 months), shows strong expression signatures of cell proliferation and antiapoptosis genes (such as PNCA and cell cycle regulators CDK4, CCNB1, CCNA2, and CKS2) as well as genes involving ubiquitination and sumoylation; Class B, the high survival subclass (overall survival time 83.7 ±10.3 months), does not have the above expression signature. In fact, insights into HCC-specific alterations of signal transduction pathways and protein expression patterns have led to the development of new therapeutic agents with molecular targets such as EGFR, VEGF, or other multi-kinase inhibitors. In the future, these specific molecular alterations in HCC can potentially serve as diagnostic tools, prognostic markers, and/or therapeutic targets with the potential to alter clinical outcomes.
【 授权许可】
CC BY-NC
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904034415868ZK.pdf | 132KB | download |