Commentationes mathematicae Universitatis Carolinae | |
Module-valued functors preserving the covering dimension | |
Jan Spěvák1  | |
关键词: covering dimension; topological group; function space; topology of pointwise convergence; free topological module; $l$-equivalence; $G$-equivalence; | |
DOI : 10.14712/1213-7243.2015.131 | |
学科分类:物理化学和理论化学 | |
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics | |
【 摘 要 】
We prove a general theorem about preservation of the covering dimension $\operatorname{dim}$ by certain covariant functors that implies, among others, the following concrete results. \begin{enumerate} \item[(i)] If $G$ is a pathwise connected separable metric NSS abelian group and $X$, $Y$ are Tychonoff spaces such that the group-valued function spaces $C_p(X,G)$ and $C_p(Y,G)$ are topologically isomorphic as topological groups, then $\operatorname{dim} X=\operatorname{dim} Y$. \item[(ii)] If free precompact abelian groups of Tychonoff spaces $X$ and $Y$ are topologically isomorphic, then $\operatorname{dim} X=\operatorname{dim} Y$. \item[(iii)] If $R$ is a topological ring with a countable network and the free topological $R$-modules of Tychonoff spaces $X$ and $Y$ are topologically isomorphic, then $\operatorname{dim} X=\operatorname{dim} Y$. \end{enumerate} The classical result of Pestov [{\it The coincidence of the dimensions dim of $l$-equivalent spaces\/}, Soviet Math. Dokl. {\bf 26} (1982), no.~2, 380--383] about preservation of the covering dimension by $l$-equivalence immediately follows from item (i) by taking the topological group of real numbers as $G$.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904032653751ZK.pdf | 52KB | download |