Advances in Difference Equations | |
A generalized Lyapunov-type inequality in the frame of conformable derivatives | |
Fahd Jarad1  Thabet Abdeljawad2  Jehad Alzabut2  | |
[1] Department of Mathematics and Computer Science, ÇDepartment of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia;ankaya University, Ankara, Turkey | |
关键词: Lyapunov inequality; conformable derivative; Greenâs function; boundary value problem; Sturm-Liouville eigenvalue problem; 34A08; 26D15; | |
DOI : 10.1186/s13662-017-1383-z | |
学科分类:数学(综合) | |
来源: SpringerOpen | |
【 摘 要 】
We prove a generalized Lyapunov-type inequality for a conformable boundary value problem (BVP) of orderα∈(1,2]$\alpha \in (1,2]$. Indeed, it is shown that if the boundary value problem(Tαcx)(t)+r(t)x(t)=0,t∈(c,d),x(c)=x(d)=0$$ \bigl(\textbf{T}_{\alpha }^{c} x\bigr) (t)+r(t)x(t)=0,\quad t \in (c,d), x(c)=x(d)=0 $$has a nontrivial solution, where r is a real-valued continuous function on[c,d]$[c,d]$, then1∫cd|r(t)|dt>αα(α−1)α−1(d−c)α−1.$$ \int_{c}^{d} \bigl\vert r(t) \bigr\vert \,dt> \frac{\alpha^{\alpha }}{(\alpha -1)^{\alpha -1}(d-c)^{ \alpha -1}}. $$Moreover, a Lyapunov type inequality of the form2∫cd|r(t)|dt>3α−1(d−c)2α−1(3α−12α−1)2α−1α,12<α≤1,$$ \int_{c}^{d} \bigl\vert r(t) \bigr\vert \,dt> \frac{3\alpha -1}{(d-c)^{2\alpha -1}} \biggl( \frac{3 \alpha -1}{2\alpha -1} \biggr) ^{\frac{2\alpha -1}{\alpha }},\quad \frac{1}{2}< \alpha \leq 1, $$is obtained for a sequential conformable BVP. Some examples are given and an application to conformable Sturm-Liouville eigenvalue problem is analyzed.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904026473267ZK.pdf | 1676KB | download |