期刊论文详细信息
Advances in Difference Equations
Fractional operators with exponential kernels and a Lyapunov type inequality
Thabet Abdeljawad1 
[1] Department of Mathematics and Physical Sciences, Prince Sultan University, Riyadh, Saudi Arabia
关键词: CFC fractional derivative;    CFR fractional derivative;    Lyapunov inequality;    boundary value problem;    higher order;    exponential kernel;   
DOI  :  10.1186/s13662-017-1285-0
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this article, we extend fractional calculus with nonsingular exponential kernels, initiated recently by Caputo and Fabrizio, to higher order. The extension is given to both left and right fractional derivatives and integrals. We prove existence and uniqueness theorems for the Caputo (CFC) and Riemann (CFR) type initial value problems by using Banach contraction theorem. Then we prove Lyapunov type inequality for the Riemann type fractional boundary value problems within the exponential kernels. Illustrative examples are analyzed and an application about Sturm-Liouville eigenvalue problem in the sense of this fractional calculus is given as well.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201901222518153ZK.pdf 1619KB PDF download
  文献评价指标  
  下载次数:22次 浏览次数:5次