期刊论文详细信息
Advances in Difference Equations
An extension of generalized Apostol-Euler polynomials
Qiu-Ming Luo1  Si Chen1  Yi Cai2 
[1] Department of Mathematics, Chongqing Normal University, Chongqing Higher Education Mega Center, Huxi Campus, Chongqing, People’s Republic of China
关键词: Bernoulli, Euler and Genocchi polynomials;    generating functions;    generalized Apostol-Euler and Apostol-Bernoulli polynomials;    Jacobi polynomials;    Laguerre polynomials;    Hermite polynomials;    Stirling numbers of the second kind;   
DOI  :  10.1186/1687-1847-2013-61
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

Recently, Tremblay, Gaboury and Fugère introduced a class of the generalized Bernoulli polynomials (see Tremblay in Appl. Math. Let. 24:1888-1893, 2011). In this paper, we introduce and investigate an extension of the generalized Apostol-Euler polynomials. We state some properties for these polynomials and obtain some relationships between the polynomials and Apostol-Bernoulli polynomials, Stirling numbers of the second kind, Jacobi polynomials, Laguerre polynomials, Hermite polynomials and generalized Bernoulli polynomials. MSC:11B68, 11B73, 33C45.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904021382361ZK.pdf 250KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:12次