会议论文详细信息
8th International Symposium on Quantum Theory and Symmetries
The Dunkl oscillator in three dimensions
Genest, Vincent X.^1 ; Vinet, Luc^1 ; Zhedanov, Alexei^2
Centre de Recherches Mathématiques, Université de Montréal, Montréal, QC, Canada^1
Donetsk Institute for Physics and Technology, Donetsk, Ukraine^2
关键词: Cartesians;    Euclidean spaces;    Jacobi polynomials;    Laguerre;    Oscillator model;    Separation of variables;    Spherical coordinates;    Three dimensions;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/512/1/012010/pdf
DOI  :  10.1088/1742-6596/512/1/012010
来源: IOP
PDF
【 摘 要 】

The isotropic Dunkl oscillator model in three-dimensional Euclidean space is considered. The system is shown to be maximally superintegrable and its symmetries are obtained by the Schwinger construction using the raising/lowering operators of the dynamical sl-1(2) algebra of the one-dimensional Dunkl oscillator. The invariance algebra generated by the constants of motion, an extension of u(3) with reflections, is called the Schwinger-Dunkl algebra sd(3). The system is shown to admit separation of variables in Cartesian, polar (cylindrical) and spherical coordinates and the corresponding separated solutions are expressed in terms of generalized Hermite, Laguerre and Jacobi polynomials.

【 预 览 】
附件列表
Files Size Format View
The Dunkl oscillator in three dimensions 674KB PDF download
  文献评价指标  
  下载次数:21次 浏览次数:19次