期刊论文详细信息
Frontiers in Psychology
Dual learning processes underlying human decision-making in reversal learning tasks: functional significance and evidence from the model fit to human behavior
Yu Bai1 
关键词: reinforcement learning model;    reversal learning;    learning rate;    decision making;    value;   
DOI  :  10.3389/fpsyg.2014.00871
学科分类:心理学(综合)
来源: Frontiers
PDF
【 摘 要 】

Humans are capable of correcting their actions based on actions performed in the past, and this ability enables them to adapt to a changing environment. The computational field of reinforcement learning (RL) has provided a powerful explanation for understanding such processes. Recently, the dual learning system, modeled as a hybrid model that incorporates value update based on reward-prediction error and learning rate modulation based on the surprise signal, has gained attention as a model for explaining various neural signals. However, the functional significance of the hybrid model has not been established. In the present study, we used computer simulation in a reversal learning task to address functional significance in a probabilistic reversal learning task. The hybrid model was found to perform better than the standard RL model in a large parameter setting. These results suggest that the hybrid model is more robust against the mistuning of parameters compared with the standard RL model when decision-makers continue to learn stimulus-reward contingencies, which can create abrupt changes. The parameter fitting results also indicated that the hybrid model fit better than the standard RL model for more than 50% of the participants, which suggests that the hybrid model has more explanatory power for the behavioral data than the standard RL model.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201904020038449ZK.pdf 1835KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:9次