期刊论文详细信息
Brazilian Computer Society. Journal
Microalgae classification using semi-supervised and active learning based on Gaussian mixture models
Amá1  Paulo Drews-2  Virgí2  Pablo Machado3  Matheus Faria5  Rafael G. Colares6  nia Tavano6  lia Detoni7 
[1] ãCentro de CiêDepartamento de CiêInstituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil;ncia da Computaçncias Computacionais, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil;o, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
关键词: Active learning;    Semi-supervised learning;    Microalgae classification;   
DOI  :  10.1007/s13173-013-0121-y
学科分类:农业科学(综合)
来源: Springer U K
PDF
【 摘 要 】

Microalgae are unicellular organisms that have different shapes, sizes and structures. Classifying these microalgae manually can be an expensive task, because thousands of microalgae can be found in even a small sample of water. This paper presents an approach for an automatic/semi-automatic classification of microalgae based on semi-supervised and active learning algorithms, using Gaussian mixture models. The results show that the approach has an excellent cost-benefit relation, classifying more than 90 % of microalgae in a well distributed way, overcoming the supervised algorithm SVM.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902193873469ZK.pdf 1524KB PDF download
  文献评价指标  
  下载次数:21次 浏览次数:13次