| Brazilian Computer Society. Journal | |
| Microalgae classification using semi-supervised and active learning based on Gaussian mixture models | |
| Amá1  Paulo Drews-2  Virgí2  Pablo Machado3  Matheus Faria5  Rafael G. Colares6  nia Tavano6  lia Detoni7  | |
| [1] ãCentro de CiêDepartamento de CiêInstituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil;ncia da Computaçncias Computacionais, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil;o, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil | |
| 关键词: Active learning; Semi-supervised learning; Microalgae classification; | |
| DOI : 10.1007/s13173-013-0121-y | |
| 学科分类:农业科学(综合) | |
| 来源: Springer U K | |
PDF
|
|
【 摘 要 】
Microalgae are unicellular organisms that have different shapes, sizes and structures. Classifying these microalgae manually can be an expensive task, because thousands of microalgae can be found in even a small sample of water. This paper presents an approach for an automatic/semi-automatic classification of microalgae based on semi-supervised and active learning algorithms, using Gaussian mixture models. The results show that the approach has an excellent cost-benefit relation, classifying more than 90 % of microalgae in a well distributed way, overcoming the supervised algorithm SVM.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201902193873469ZK.pdf | 1524KB |
PDF