期刊论文详细信息
BMC Bioinformatics
ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks
Research
Domenica D'Elia1  Gianvito Pio2  Michelangelo Ceci2  Donato Malerba2 
[1] CNR, Institute for Biomedical Technologies, Via Amendola 122/D, I-70126, Bari, Italy;Department of Computer Science, University of Bari Aldo Moro, Via Orabona, 4, I-70125, Bari, Italy;
关键词: miRNA-gene regulatory networks;    Semi-supervised learning;    Biclustering;    miRNA database;   
DOI  :  10.1186/1471-2105-16-S9-S7
来源: Springer
PDF
【 摘 要 】

BackgroundThe understanding of mechanisms and functions of microRNAs (miRNAs) is fundamental for the study of many biological processes and for the elucidation of the pathogenesis of many human diseases. Technological advances represented by high-throughput technologies, such as microarray and next-generation sequencing, have significantly aided miRNA research in the last decade. Nevertheless, the identification of true miRNA targets and the complete elucidation of the rules governing their functional targeting remain nebulous. Computational tools have been proven to be fundamental for guiding experimental validations for the discovery of new miRNAs, for the identification of their targets and for the elucidation of their regulatory mechanisms.DescriptionComiRNet (Co-clustered miRNA Regulatory Networks) is a web-based database specifically designed to provide biologists and clinicians with user-friendly and effective tools for the study of miRNA-gene target interaction data and for the discovery of miRNA functions and mechanisms. Data in ComiRNet are produced by a combined computational approach based on: 1) a semi-supervised ensemble-based classifier, which learns to combine miRNA-gene target interactions (MTIs) from several prediction algorithms, and 2) the biclustering algorithm HOCCLUS2, which exploits the large set of produced predictions, with the associated probabilities, to identify overlapping and hierarchically organized biclusters that represent miRNA-gene regulatory networks (MGRNs).ConclusionsComiRNet represents a valuable resource for elucidating the miRNAs' role in complex biological processes by exploiting data on their putative function in the context of MGRNs. ComiRnet currently stores about 5 million predicted MTIs between 934 human miRNAs and 30,875 mRNAs, as well as 15 bicluster hierarchies, each of which represents MGRNs at different levels of granularity. The database can be freely accessed at: http://comirnet.di.uniba.it.

【 授权许可】

Unknown   
© Pio et al.; licensee BioMed Central Ltd. 2015. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311101144578ZK.pdf 2472KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  文献评价指标  
  下载次数:2次 浏览次数:0次