期刊论文详细信息
Applications of mathematics
A priori error estimates for Lagrange interpolation on triangles
关键词: finite element method;    Lagrange interpolation;    circumradius condition;    minimum angle condition;    maximum angle condition;   
DOI  :  
学科分类:应用数学
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

We present the error analysis of Lagrange interpolation on triangles. A new a priori error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are imposed in order to get this type of error estimates. To derive the new error estimate, we make use of the two key observations. The first is that squeezing a right isosceles triangle perpendicularly does not reduce the approximation property of Lagrange interpolation. An arbitrary triangle is obtained from a squeezed right triangle by a linear transformation. The second key observation is that the ratio of the singular values of the linear transformation is bounded by the circumradius of the target triangle.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201902024629894ZK.pdf 264KB PDF download
  文献评价指标  
  下载次数:20次 浏览次数:23次