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Abstract. We present the error analysis of Lagrange interpolation on triangles. A new
a priori error estimate is derived in which the bound is expressed in terms of the diameter
and circumradius of a triangle. No geometric conditions on triangles are imposed in order
to get this type of error estimates. To derive the new error estimate, we make use of the two
key observations. The first is that squeezing a right isosceles triangle perpendicularly does
not reduce the approximation property of Lagrange interpolation. An arbitrary triangle
is obtained from a squeezed right triangle by a linear transformation. The second key
observation is that the ratio of the singular values of the linear transformation is bounded
by the circumradius of the target triangle.

Keywords: finite element method; Lagrange interpolation; circumradius condition; mini-
mum angle condition; maximum angle condition

MSC 2010 : 65D05, 65N30

1. Introduction

Lagrange interpolation on triangles and the associated error estimates are im-

portant subjects in numerical analysis. In particular, they are crucial in the error

analysis of finite element methods. It is well known that we must impose some geo-

metric condition on the triangles to obtain an error estimation [2], [14], [18], [19]. In

the following, we mention some common estimations.

Let K ⊂ R
2 be an arbitrary triangle with vertices x1, x2, and x3. Let P1 be the

set of polynomials with two variables whose order is at most 1. For a continuous

function v ∈ C0(K), the Lagrange interpolation I1
Kv ∈ P1 of order 1 is defined by
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v(xi) = (I1
Kv)(xi), i = 1, 2, 3. For K, let hK be the length of its longest edge, and

̺K the diameter of its inscribed circle.

The minimum angle condition, Zlámal [19] (1968), Ženíšek [18] (1969). Let

θ0 (0 < θ0 6 π/3) be a constant. If any angle θ of K satisfies θ > θ0 and hK 6 1,

then there exists a constant C = C(θ0) independent of hK such that

‖v − I1
Kv‖1,2,K 6 ChK |v|2,2,K ∀ v ∈ H2(K).

Many textbooks on finite element methods, such as those by Ciarlet [6], Brenner-

Scott [4], and Ern-Guermond [7], explain the following theorem.

Shape-regularity. Let σ > 0 be a constant. If hK/̺K 6 σ and hK 6 1, then

there exists a constant C that is independent of hK such that

(1.1) ‖v − I1
Kv‖1,2,K 6 C

h2
K

̺K
|v|2,2,K 6 CσhK |v|2,2,K ∀ v ∈ H2(K).

It is a simple exercise to show that the minimum angle condition is equivalent to

the shape-regularity for triangular elements in R2. The maximum of the ratio hK/̺K

in a triangulation is called the chunkiness parameter [4]. The shape-regularity con-

dition is sometimes called the inscribed ball condition as well. On the conditions

equivalent to the shape-regularity, see [3]. The minimum angle condition or shape-

regularity, however, are not necessarily needed to obtain an error estimate. The

following condition is well known.

The maximum angle condition, Babuška-Aziz [2] (1976). Let θ1 (π/3 6

θ1 < π) be a constant. If any angle θ of K satisfies θ 6 θ1 and hK 6 1, then there

exists a constant C = C(θ1) that is independent of hK such that

‖v − I1
Kv‖1,2,K 6 ChK |v|2,2,K ∀ v ∈ H2(K).

Later, Křížek [14] introduced the semiregularity condition, which is equivalent to

the maximum angle condition (see Section 4.1 (2)). Let RK be the circumradius

of K.

The semiregularity condition, Křížek [14] (1991). Let p > 1 and σ > 0 be

constants. If RK/hK 6 σ and hK 6 1, then there exists a constant C = C(σ) that

is independent of hK such that

‖v − I1
Kv‖1,p,K 6 ChK |v|2,p,K ∀ v ∈ W 2,p(K).
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Since its discovery, the maximum angle condition has been considered the most es-

sential condition for error estimates of Lagrange interpolation on triangular elements.

However, Hannukainen, Korotov and Křížek [8] pointed out that the maximum angle

condition is not necessary for convergence of the finite element method by showing

simple numerical examples. Furthermore, the present authors recently reported the

following error estimation.

The circumradius condition, Kobayashi-Tsuchiya [11] (2014). For an arbi-

trary triangle K with RK 6 1, there exists a constant Cp that is independent of K

such that the following estimate holds :

(1.2) ‖v − I1
Kv‖1,p,K 6 CpRK |v|2,p,K ∀ v ∈ W 2,p(K), 1 6 p 6 ∞.

Note that estimate (1.2) follows from

(1.3) B1,1
p (K) := sup

v∈T 1
p (K)

|v|1,p,K
|v|2,p,K

6 CpRK ,

where the set T 1
p (K) ⊂ W 2,p(K) is defined by

T 1
p (K) := {v ∈ W 2,p(K) ; v(xi) = 0, i = 1, 2, 3}.

Suppose that {Th}h>0 is a sequence of triangulations of a polygonal domainΩ ⊂ R
2

such that

(1.4) lim
h→0

max
K∈Th

RK = 0.

Let Sh be the set of all piecewise linear functions on Th, defined by

Sh := {vh ∈ H1
0 (Ω) ∩ C(Ω); vh|K ∈ P1 ∀K ∈ Th},

and let uh ∈ Sh be the piecewise linear finite element solution on the triangulation

Th of the Poisson problem

−∆u = f in Ω, u = 0 on ∂Ω,

for a given f ∈ L2(Ω). Then, Céa’s lemma [6], Theorem 2.4.1, claims that, for the

exact solution u,

‖u− uh‖1,2,Ω 6 C inf
vh∈Sh

|u− vh|1,2,Ω 6 C|u− I1
hu|1,2,Ω 6 C

(
max
K∈Th

RK

)
|u|2,2,Ω,
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where I1
hu is the global piecewise linear interpolation of u defined by I1

hu|K = I1
Ku

for any K ∈ Th. Hence, if (1.4) holds and u ∈ H2(Ω), the finite element solutions

{uh} converge to u as h → 0. The condition (1.4) is called the circumradius condition

in [11].

Let α, β ∈ R be such that 1 < α < β < 1 + α. Consider the triangle K whose

vertices are (0, 0)T, (h, 0)T, and (hα, hβ)T. It is straightforward to see that ̺K =

O(hβ) and RK = O(h1+α−β). Hence, if h → 0, the convergence rates which (1.1) and

(1.2) yield are O(h2−β) and O(h1+α−β), respectively. Therefore, (1.2) gives a better

convergence rate than (1.1). Moreover, if β > 2, (1.1) does not yield convergence

while (1.2) does. Note that, when h → 0, the maximum angle of K approaches π.

From these facts we can say that the circumradius RK of K is more important

than its minimum and maximum angles (or the chunkiness parameter). It should

also be noted that the circumradius condition is closely related to the definition of

the surface area [12].

The aim of this paper is to extend (1.2) to higher-order Lagrange interpolation

and to prove the following theorem.

Theorem 1.1. Let K be an arbitrary triangle. Let 1 6 p 6 ∞, and k, m

be integers such that k > 1 and 0 6 m 6 k. Then, for the kth-order Lagrange

interpolation Ik
K on K, the following estimation holds:

(1.5) |v − Ik
Kv|m,p,K 6 C

(RK

hK

)m
hk+1−m
K |v|k+1,p,K = CRm

Khk+1−2m
K |v|k+1,p,K

for any v ∈ W k+1,p(K), where the constant C depends only on k, p and is indepen-

dent of the geometry of K.

We here emphasize that no geometric condition on the triangles is imposed in

Theorem 1.1. Therefore, the estimation (1.5) is valid even if the maximum angle

condition does not hold.

To prove Theorem 1.1, we make use of two key observations. One of them is

that “squeezing an isosceles right triangle perpendicularly does not reduce the ap-

proximation property of Lagrange interpolation,” which was first noted by Babuška

and Aziz [2] for the case k = 1 and p = 2. This obervation is stated rigorously in

Theorem 2.3.

Note that an arbitrary triangle K can be obtained by “folding” or “unfolding”

a right triangle. Let A be the 2 × 2 matrix that defines the linear transformation

of “folding” and “unfolding” (see (3.2)). Liu and Kikuchi [15] pointed out that an

error estimation of the linear Lagrange interpolation I1
K is obtained by considering

the eigenvalues of ATA. In Section 3, we rewrite Liu and Kikuchi’s proofs using
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Kronecker products of matrices, and one of their main results [15], Corollary 1 is

immediately obtained (Theorem 3.1). The other key observation is that the upper

bound in Theorem 3.1 is closely related to the circumradius RK of K (Lemma 3.2).

Combining Theorem 3.1 and Lemma 3.2, an alternative proof of (1.3) is obtained for

the case p = 2 (Corollary 3.3).

This method is straightforwardly extended to higher-order Lagrange interpolation

in Section 4, and we obtain the main results of Theorem 4.2 that is equivalent to

Theorem 1.1.

2. Preliminaries

2.1. Notation. Let n > 1 be a positive integer and R
n the n-dimensional Eu-

clidean space. Throughout this paper,K is a triangle in R2. We denote the Euclidean

norm of x ∈ R
n by |x|. Let Rn∗ := {l : R

n → R : l is linear} be the dual space of Rn.

We always regard x ∈ R
n as a column vector and a ∈ R

n∗ as a row vector. For a ma-

trix A and x ∈ R
n, AT and xT denote their transpositions. For matrices A and

B, A ⊗ B denotes their Kronecker product. For a differentiable function f with n

variables, its gradient ∇f = grad f ∈ R
n∗ is the row vector

∇f = ∇xf :=
( ∂f

∂x1
, . . . ,

∂f

∂xn

)
, x := (x1, . . . , xn)

T.

Let N0 be the set of nonnegative integers. For δ = (δ1, . . . , δn) ∈ (N0)
n, the

multi-index ∂δ of partial differentiation (in the sense of distribution) is defined by

∂δ = ∂δ
x :=

∂|δ|

∂xδ1
1 . . . ∂xδn

n

, |δ| := δ1 + . . .+ δn.

Let Ω ⊂ R
n be a (bounded) domain. The usual Lebesgue space is denoted by

Lp(Ω) for 1 6 p 6 ∞. For a positive integer k, the Sobolev space W k,p(Ω) is defined

by W k,p(Ω) := {v ∈ Lp(Ω); ∂δv ∈ Lp(Ω), |δ| 6 k}. The norm and semi-norm of
W k,p(Ω) are defined, for 1 6 p < ∞, by

|v|k,p,Ω :=

(∑

|δ|=k

|∂δv|p0,p,Ω
)1/p

, ‖v‖k,p,Ω :=

( ∑

06m6k

|v|pm,p,Ω

)1/p
,

and |v|k,∞,Ω := max
|δ|=k

{
ess sup

x∈Ω
|∂δv(x)|

}
, ‖v‖k,∞,Ω := max

06m6k
{|v|m,∞,Ω}.

2.2. Preliminaries from matrix analysis. We introduce some facts from the

theory of matrix analysis. For their proofs, readers are referred to textbooks on

matrix analysis such as [9] and [17].
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Let n > 2 be an integer and A an n×n regular matrix. Let B := A−1. Then ATA

is symmetric positive-definite and has n positive eigenvalues. Let 0 < µm 6 µM be

the minimum and maximum eigenvalues. Then we have

µm|x|2 6 |Ax|2 6 µM |x|2, µ−1
M |x|2 6 |BTx|2 6 µ−1

m |x|2 ∀x ∈ R
n.

Then the minimum and maximum eigenvalues of (ATA)⊗(ATA) = (A⊗A)T(A⊗A)

are 0 < µ2
m 6 µ2

M . Hence, for any w ∈ R
n2

, we have

µ2
m|w|2 6 |(A⊗A)w|2 6 µ2

M |w|2, µ−2
M |w|2 6 |(B ⊗B)Tw|2 6 µ−2

m |w|2.

The above facts can be straightforwardly extended to the case of the higher-order

Kronecker product A ⊗ . . . ⊗ A. For A ⊗ . . . ⊗ A, B ⊗ . . . ⊗ B (the kth Kronecker

products), we have, for w ∈ R
nk

,

µk
m|w|2 6 |(A⊗ . . .⊗A)w|2 6 µk

M |w|2, µ−k
M |w|2 6 |(B ⊗ . . .⊗B)Tw|2 6 µ−k

m |w|2.

2.3. The affine transformation defined by a regular matrix. Let A be an

n× n matrix with detA > 0. We consider the affine transformation ϕ(x) defined by

y = ϕ(x) := Ax+ b for x = (x1, . . . , xn)
T, y = (y1, . . . , yn)

T with b ∈ R
n. Suppose

that a reference region Ω̂ ⊂ R
n is transformed to a domain Ω by ϕ; Ω := ϕ(Ω̂).

Then a function v(y) defined on Ω is pulled-back to the function v̂(x) on Ω̂ as

v̂(x) := v(ϕ(x)) = v(y). Then we have ∇xv̂ = (∇yv)A, ∇yv = (∇xv̂)B, and

|∇yv|2 = |(∇xv̂)B|2 = (∇xv̂)BBT(∇xv̂)
T.

The Kronecker product ∇⊗∇ of the gradient ∇ is defined by

∇⊗∇ :=
( ∂

∂x1
∇, . . . ,

∂

∂xn
∇
)
=

( ∂2

∂x2
1

,
∂2

∂x1∂x2
, . . . ,

∂2

∂xn−1∂xn
,
∂2

∂x2
n

)
.

We regard ∇⊗∇ as a row vector. From this definition, it follows that

∑

|δ|=2

(∂δv)2 =

n∑

i,j=1

( ∂2v

∂xi∂xj

)2
= |(∇⊗∇)v|2

and (∇x ⊗ ∇x)v̂ = ((∇y ⊗ ∇y)v)(A ⊗ A), (∇y ⊗ ∇y)v = ((∇x ⊗ ∇x)v̂)(B ⊗ B).

Suppose that the minimum and maximum eigenvalues of BBT are 0 < λm 6 λM .

Then we have λm|∇xv̂|2 6 |∇yv|2 6 λM |∇xv̂|2 and
∑

|δ|=2

(∂yv)
2 = |(∇y ⊗∇y)v|2 = ((∇x ⊗∇x)v̂)(B ⊗B)(B ⊗ B)T((∇x ⊗∇x)v̂)

T

= ((∇x ⊗∇x)v̂)(BBT ⊗BBT)((∇x ⊗∇x)v̂)
T,

λ2
m

∑

|δ|=2

(∂δ
xv̂)

2
6

∑

|δ|=2

(∂δ
yv)

2
6 λ2

M

∑

|δ|=2

(∂δ
xv̂)

2.
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The above inequalities can be easily extended to higher-order derivatives giving the

following inequalities:

(2.1) λk
m

∑

|δ|=k

(∂δ
xv̂)

2
6

∑

|δ|=k

(∂δ
yv)

2
6 λk

M

∑

|δ|=k

(∂δ
xv̂)

2, k > 1.

2.4. Useful inequalities. For N positive real numbers U1, . . . , UN , the following

inequalities hold:

N∑

k=1

Up
k 6 N τ(p)

( N∑

k=1

U2
k

)p/2

, τ(p) :=

{
1− p/2, 1 6 p 6 2,

0, 2 6 p < ∞,
(2.2)

( N∑

k=1

U2
k

)p/2

6 Nγ(p)
N∑

k=1

Up
k , γ(p) :=

{
0, 1 6 p 6 2,

p/2− 1, 2 6 p < ∞.
(2.3)

2.5. The Sobolev imbedding theorems. If 1 < p < ∞, Sobolev’s Imbedding
Theorem and Morry’s inequality imply that

W 2,p(K) ⊂ C1,1−2/p(K), p > 2,

H2(K) ⊂ W 1,q(K) ⊂ C0,1−2/q(K) ∀ q > 2,

W 2,p(K) ⊂ W 1,2p/(2−p)(K) ⊂ C0,2(p−1)/p(K), 1 < p < 2.

For proofs of the Sobolev imbedding theorems, see [1] and [5]. For the case p = 1, we

still have the continuous imbedding W 2,1(K) ⊂ C0(K). For the proof of the critical

imbedding, see [1], Theorem 4.12 and [4], Lemma 4.3.4.

2.6. Lagrange interpolation on triangles and their estimations. Let K

be a triangle with vertices xi, i = 1, 2, 3, and let (λ1, λ2, λ3) be its barycentric

coordinates with respect to xi. By definition, we have 0 6 λi 6 1, λ1 + λ2 + λ3 = 1.

For a positive integer k > 1, the set Σk(K) of points on K is defined by

(2.4) Σk(K) :=
{(a1

k
,
a2
k
,
a3
k

)
∈ K ; ai ∈ N0, 0 6 ai 6 k, a1 + a2 + a3 = k

}
.

Figure 1. The set Σk(K), k = 1, k = 2, k = 3.
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For a triangle K, a positive integer k, and 1 6 p 6 ∞, we define the subset
T k
p (K) ⊂ W k+1,p(K) by

(2.5) T k
p (K) := {v ∈ W k+1,p(K) ; v(x) = 0 ∀x ∈ Σk(K)}.

Let Pk be the set of polynomials with two variables whose degree is at most k. For

a continuous function v ∈ C(K), the kth-order Lagrange interpolation Ik
Kv ∈ Pk of

v is defined by v(x) = (Ik
Kv)(x) for any x ∈ Σk(K). From this definition, it is clear

that v − Ik
Kv ∈ T k

p (K) for any v ∈ W k+1,p(K).

For an integer m such that 0 6 m 6 k, Bm,k
p (K) is defined by

Bm,k
p (K) := sup

v∈T k
p (K)

|v|m,p,K

|v|k+1,p,K
.

Note that we have

(2.6) Bm,k
p (K) = inf{C; |v − Ik

Kv|m,p,K 6 C|v|k+1,p,K ∀ v ∈ W k+1,p(K)}.

For an error estimate of Lagrange interpolation, standard textbooks such as [6]

and [4] explain the following theorem. Recall that ̺K is the diameter of its inscribed

circle of K.

Theorem 2.1. Let 1 6 p 6 ∞, and let k > 1 be an integer. Let σ > 0 be

a positive constant. Then, for a triangle K that satisfies hK/̺K 6 σ, the following

estimate holds:

(2.7) |v − Ik
Kv|m,p,K 6 Chk+1−m

K |v|k+1,p,K ∀ v ∈ W k+1,p(K),

where m = 0, 1, . . . , k, and the constant C depends on k, p, and σ.

Jamet presented an improved estimation, which does not require the shape-

regularity condition [10], Théorème 3.1.

Theorem 2.2 (Jamet). Let 1 6 p 6 ∞. Let m > 0, k > 1 be integers such that

k + 1 −m > 2/p (1 < p 6 ∞) or k −m > 1 (p = 1).1 Then the following estimate

holds:

(2.8) |v − Ik
Kv|m,p,K 6 C

hk+1−m
K

cosm(θK/2)
|v|k+1,p,K ∀ v ∈ W k+1,p(K),

where θK > π/3 is the maximum angle of K, and C depends only on k, p.

1Note that in [10], Théorème 3.1 the case p = 1 is not mentioned explicitly but clearly
holds for triangles.
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Note that, if m = k > 1 and 1 6 p 6 2, estimate (2.8) cannot be applied. As will

be noted in Section 4.1 (2), Theorem 1.1 includes Theorem 2.2 as a special case.

Let Kα be the right triangle with vertices (0, 0)T, (1, 0)T, and (0, α)T (0 < α 6 1)

that is obtained by squeezing K̂. As is stated in Section 1, squeezing a right tri-

angle perpendicularly does not deteriorate the approximation property of Lagrange

interpolation. We have the following theorem:

Theorem 2.3. There exists a constant Ck,p that depends only on k and p (1 6

p 6 ∞) and is independent of α (0 < α 6 1) such that

(2.9) Bm,k
p (Kα) := sup

v∈T k
p (Kα)

|v|m,p,Kα

|v|k+1,p,Kα

6 Ck,p, m = 0, 1, . . . , k.

Note that Theorem 2.3 is not a totally new result. For the case m = k = 1 and

p = 2, (2.9) was proved by Babuška and Aziz in [2]. Kobayashi and Tsuchiya [11]

proved (2.9) with m = k = 1 and any p (1 6 p 6 ∞). For the case k > 1 with

p = 2 and m = 0, 1, (2.9) was proved by Shenk [16]. By (2.8), estimate (2.9) holds

if k + 1 −m > 2/p (1 < p 6 ∞) or k −m > 1 (p = 1). Hence, it seems that (2.9)

with k = m > 2 and 1 6 p 6 2 has not yet been proved. A proof of Theorem 2.3 by

the Babuška-Aziz type technique will be given in [13].

3. Liu and Kikuchi’s method

In this section, we give an alternative proof of (1.3) for the case p = 2 using the

Liu and Kikuchi’s method. To this end, we rewrite their proof using the Kronecker

product of matrices.

For s, t, and α with s2 + t2 = 1, t > 0, 0 < α 6 1, we consider the vector

(αs, αt)T ∈ R
2. Let K be the triangle with vertices x1 := (0, 0)T, x2 := (1, 0)T, and

x3 := (αs, αt)T. Let e1, e2, e3 be the three edges of K, as depicted in Figure 2.

Without loss of generality, we assume that e2 is the longest edge of K. Let θ be the

angle between e1 and e3. Then s = cos θ, t = sin θ, and the assumption that e2 is

the longest yields

(3.1) s = cos θ 6
α

2
6

1

2
,

π

3
6 θ < π.

Note that an arbitrary triangle in R
2 can be transformed to K by a sequence of

scaling, translation, rotation, and mirror imaging.

We define the 2× 2 matrices as

(3.2) A :=

(
1 s

0 t

)
, B := A−1 =

(
1 −st−1

0 t−1

)
.
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e1

e2e3

θ
x1 x2

x3

K

Figure 2. The triangle under consideration. The vertices are x1 = (0, 0)
T, x2 = (1, 0)

T,

and x3 = (αs, αt)
T, where s2 + t2 = 1, t > 0, and 0 < α 6 1. We assume that

|e1| = 1 6 |e2|.

Then Kα can be transformed to K by the transformation y = Ax. Moreover,

T k
p (K) is pulled-back to T k

p (Kα) as T k
p (K) ∋ v 7→ v̂ := v ◦ A ∈ T k

p (Kα). A simple

computation yields that ATA has eigenvalues 1 ± |s|, and BBT has eigenvalues

(1∓|s|)/t2. It follows from (2.1) that (1−|s|)t−2|∇xv̂|2 6 |∇yv|2 6 (1+|s|)t−2|∇xv̂|2
and

(3.3)
(1− |s|)2

t4

∑

|δ|=2

(∂δ
xv̂)

2
6

∑

|δ|=2

(∂δ
yv)

2
6

(1 + |s|)2
t4

∑

|δ|=2

(∂δ
xv̂)

2.

Furthermore, because the determinant of A is t, we have

|v|21,2,K 6
1 + |s|

t
|v̂|21,2,Kα

,
(1− |s|)2

t3
|v̂|22,2,Kα

6 |v|22,2,K ,

|v|21,2,K
|v|22,2,K

6
t2(1 + |s|)|v̂|21,2,Kα

(1− |s|)2|v̂|22,2,Kα

=
(1 + |s|)2|v̂|21,2,Kα

(1 − |s|)|v̂|22,2,Kα

.

Combining this estimate and (2.9) withm = k = 1 and p = 2, we obtain the following

theorem [15], Corollary 1:

Theorem 3.1 (Liu-Kikuchi). For 0 < α 6 1 we have the estimate

B1,1
2 (K) 6

1 + |s|√
1− |s|

B1,1
2 (Kα) 6

2C1,2√
1− |s|

.

The following is the key lemma.
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Lemma 3.2. Let RK be the circumradius of K. For the triangle K considered

in this section, the following inequality holds:

1√
1− |s|

6 2
√
2RK .

P r o o f. Recall from (3.1) that s = cos θ, t = sin θ, and π/3 6 θ < π. A straight-

forward computation implies that

√
1 + |s| 6

√
2
√
1 + α2 − 2αs ∀α ∈ (0, 1], −1 < s 6

α

2
.

From the cosine and sine laws, we have |e2|2 = 1 + α2 − 2αs = 4R2
Kt2. Therefore,

we obtain

1√
1− |s|

=

√
1 + |s|
t

6

√
2

t

√
1 + α2 − 2αs =

√
2

t

√
4R2

Kt2 = 2
√
2RK .

�

Combining Theorem 3.1 and Lemma 3.2, we have obtained an alternative proof

of (1.3) for the triangle depicted in Figure 2 with p = 2.

Corollary 3.3. Let K be the triangle depicted in Figure 2. Then we have

B1,1
2 (K) := sup

v∈T 1

2
(K)

|v|1,2,K
|v|2,2,K

6 4
√
2C1,2RK .

4. Main results and their proofs

The method explained so far can be immediately extended to higher-order La-

grange interpolation. Inequality (3.3) is extended to the case of arbitrary k as fol-

lows:

(1− |s|)k
t2k

∑

|δ|=k

(∂δ
xv̂)

2
6

∑

|δ|=k

(∂δ
yv)

2
6

(1 + |s|)k
t2k

∑

|δ|=k

(∂δ
xv̂)

2.
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Let 1 6 p < ∞. Then inequalities (2.2) and (2.3) yield

|v|pm,p,K =

∫

K

∑

|δ|=m

|∂δ
yv(y)|p dy 6 2mτ(p)

∫

K

( ∑

|δ|=m

|∂δ
yv(y)|2

)p/2

dy

6 2mτ(p)
(1 + |s|

t2

)mp/2
∫

K

( ∑

|δ|=m

|∂δ
xv̂(x)|2

)p/2

dy

= 2mτ(p)
(1 + |s|

t2

)mp/2

t

∫

Kα

( ∑

|δ|=m

|∂δ
xv̂(x)|2

)p/2

dx

6 2m(τ(p)+γ(p))
(1 + |s|

t2

)mp/2

t

∫

Kα

∑

|δ|=m

|∂δ
xv̂(x)|p dx

= 2m(τ(p)+γ(p))
(1 + |s|

t2

)mp/2

t|v̂|pm,p,Kα

and

|v|pk+1,p,K =

∫

K

∑

|δ|=k+1

|∂δ
yv(y)|p dy

> 2−(k+1)γ(p)

∫

K

( ∑

|δ|=k+1

|∂δ
yv(y)|2

)p/2

dy

> 2−(k+1)γ(p)
(1− |s|

t2

)(k+1)p/2
∫

K

( ∑

|δ|=k+1

|∂δ
xv̂(x)|2

)p/2

dy

= 2−(k+1)γ(p)
(1− |s|

t2

)(k+1)p/2

t

∫

Kα

( ∑

|δ|=k+1

|∂δ
xv̂(x)|2

)p/2

dx

> 2−(k+1)(τ(p)+γ(p))
(1− |s|

t2

)(k+1)p/2

t

∫

Kα

∑

|δ|=k+1

|∂δ
xv̂(x)|p dx

= 2−(k+1)(τ(p)+γ(p))
(1− |s|

t2

)(k+1)p/2

t|v̂|pk+1,p,Kα
.

The two inequalities and Theorem 2.3, Lemma 3.2 imply

|v|pm,p,K

|v|pk+1,p,K

6 c̃pk,m,p

tp(k+1−m)(1 + |s|)mp/2|v̂|pm,p,Kα

(1− |s|)(k+1)p/2|v̂|pk+1,p,Kα

= c̃pk,m,p

(1 + |s|)(k+1+m)p/2|v̂|pm,p,Kα

tpm|v̂|pk+1,p,Kα

,

|v|m,p,K

|v|k+1,p,K
6 c̃k,m,p

(1 + |s|)(k+1+m)/2|v̂|m,p,Kα

tm|v̂|k+1,p,Kα

6 ck,pCk,pR
m
K ,
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where c̃k,m,p := 2(k+1+m)(τ(p)+γ(p))/p and the constant ck,p depends only on k, p. If

p = ∞, the same estimation is obtained by letting p → ∞ in the above inequalities.
Thus, denoting ck,pCk,p by Ck,p, the following theorem has been proved.

Theorem 4.1. Let K be the triangle depicted in Figure 2. Then the estimate

Bm,k
p (K) := sup

v∈T k
p (K)

|v|m,p,K

|v|k+1,p,K
6 Ck,pR

m
K ∀ p, 1 6 p 6 ∞

holds, where RK is the circumradius of K and the constant Ck,p depends only on k

and p.

Now, let K be an arbitrary triangle. Theorem 4.1 and Corollary 3.3 can be

extended to K. A similar transformation GY for a positive Y ∈ R is defined by

GY : R
2 → R

2, GY (x) := Y x. Let K1 be defined by K1 = GY (K). A function

u ∈ W k,p(K) on K is pulled-back to v(x) := u(G−1
Y (x)) = u(G1/Y (x)) on K1. Then

for a nonnegative integer k and any p (1 6 p 6 ∞) we have

|v|k,p,K1
= Y 2/p−k|u|k,p,K ∀u ∈ W p,k(K).

Let hK > h2 > h1 be the lengths of the three edges of K. Suppose that the second

longest edge of K is parallel to the x- or y-axis. Then, by a translation, a mirror

imaging, and G1/h2
, K can be transformed to the triangle K̃ depicted in Figure 2.

Hence, we may apply Theorem 4.1 to K̃, and obtain

sup
u∈T k

p (K)

hm
2 |u|m,2,K

hk+1
2 |u|k+1,2,K

= sup
v∈T k

p (K̃)

|v|m,p,K̃

|v|k+1,p,K̃

6 Ck,pR
m
K̃

and

sup
u∈T k

p (K)

|u|m,p,K

|u|k+1,p,K
6 Ck,pR

m
K̃
hk+1−m
2 6 Ck,pR

m
Khk+1−2m

K .

Here we use the fact that RK̃h2 = RK and hK/2 < h2 6 hK . The constant Ck,p

can be modified up to a constant multiple. Note that if p 6= 2, the Sobolev norms

are modified by a rotation. Therefore, we have shown the following theorem, which

is equivalent to Theorem 1.1 because of (2.6).
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Theorem 4.2. Let K be an arbitrary triangle. Let RK be its circumradius and

hK the length of its longest edge. Let 1 6 p 6 ∞, and let m, k be integers such that
0 6 m 6 k. Then there exists a positive constant C that depends only on k, p such

that the following estimation holds:

Bm,k
p (K) := sup

u∈T k
p (K)

|u|m,p,K

|u|k+1,p,K
6 C

(RK

hK

)m

hk+1−m
K = CRm

Khk+1−2m
K .

4.1. Concluding remarks. Here we compare the newly obtained estimate (1.5)

with known results such as (2.7), (2.8), and (1.2).

(1) For an error analysis of the finite element method, the cases m = 0, 1 are the

most important. In these cases, the estimates obtained from (1.5) can be written,

for any v ∈ W k+1,p(K), as

|v − Ik
Kv|1,p,K 6 CRKhk−1

K |v|k+1,p,K , |v − Ik
Kv|0,p,K 6 Chk+1

K |v|k+1,p,K .

They are extensions of (1.2). Recall that the constant C is independent of the

geometry of K.

(2) Recall that h1 6 h2 6 hK are the lengths of the three edges of K. Let

θK be the maximum angle of K and SK the area of K. Then, from the formulas

SK = 1
2h1h2 sin θK and RK = h1h2hK/(4SK), we have

RK

hK
=

1

2 sin θK
,

π

3
6 θK < π.

Thus, it is clear that the boundedness of RK/hK, which is the semiregularity of K

defined by Křížek, is equivalent to the maximum angle condition θK 6 θ1 < π with

a fixed constant θ1. If this is the case, the estimate from (1.5) becomes

|v − Ik
Kv|m,p,K 6

C

(2 sin θ1)m
hk+1−m
K |v|k+1,p,K ∀ v ∈ W k+1,p(K)

for m = 0, 1, . . . , k, which is an extension of Jamet’s result of (2.8).

498



References

[1] R.A.Adams, J. J. F. Fournier: Sobolev Spaces. Pure and Applied Mathematics 140,
Academic Press, New York, 2003.

[2] I. Babuška, A.K.Aziz: On the angle condition in the finite element method. SIAM J.
Numer. Anal. 13 (1976), 214–226.

[3] J.Brandts, S. Korotov, M.Křížek: On the equivalence of regularity criteria for triangular
and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008), 2227–2233.

[4] S.C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts
in Applied Mathematics 15, Springer, New York, 2008.

[5] H.Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Uni-
versitext, Springer, New York, 2011.

[6] P.G.Ciarlet: The Finite Element Method for Elliptic Problems. Classics in Applied
Mathematics 40, SIAM, Philadelphia, 2002, Repr., unabridged republ. of the orig. 1978.

[7] A.Ern, J.-L.Guermond: Theory and Practice of Finite Elements. Applied Mathematical
Sciences 159, Springer, New York, 2004.

[8] A.Hannukainen, S. Korotov, M.Křížek: The maximum angle condition is not necessary
for convergence of the finite element method. Numer. Math. 120 (2012), 79–88.

[9] R.A.Horn, C.R. Johnson: Topics in Matrix Analysis. Cambridge University Press,
Cambridge, 1991.

[10] P. Jamet: Estimations d’erreur pour des éléments finis droits presque dégénérés. Rev.
Franc. Automat. Inform. Rech. Operat., R 10 (1976), 43–60. (In French.)

[11] K.Kobayashi, T.Tsuchiya: A Babuška-Aziz type proof of the circumradius condition.
Japan J. Ind. Appl. Math. 31 (2014), 193–210.

[12] K.Kobayashi, T.Tsuchiya: On the circumradius condition for piecewise linear triangular
elements. Japan J. Ind. Appl. Math. 32 (2015), 65–76.

[13] K.Kobayashi, T. Tsuchiya: An extension of Babuška-Aziz’s theorem to higher order
Lagrange interpolation. ArXiv:1508.00119 (2015).

[14] M.Křížek: On semiregular families of triangulations and linear interpolation. Appl.
Math., Praha 36 (1991), 223–232.

[15] X.Liu, F.Kikuchi: Analysis and estimation of error constants for P0 and P1 interpola-
tions over triangular finite elements. J. Math. Sci., Tokyo 17 (2010), 27–78.

[16] N.A. Shenk: Uniform error estimates for certain narrow Lagrange finite elements. Math.
Comput. 63 (1994), 105–119.

[17] T.Yamamoto: Elements of Matrix Analysis. Saiensu-sha, 2010. (In Japanese.)
[18] A.Ženíšek: The convergence of the finite element method for boundary value problems

of the system of elliptic equations. Apl. Mat. 14 (1969), 355–376. (In Czech.)
[19] M.Zlámal: On the finite element method. Numer. Math. 12 (1968), 394–409.

Authors’ addresses: Kenta Kobayashi, Graduate School of Commerce and Manage-
ment,Hitotsubashi University,Kunitachi, 186-8601, Japan, e-mail: kenta.k@r.hit-u.ac.jp;
Takuya Tsuchiya, Graduate School of Science and Engineering, Ehime University, Mat-
suyama, 790-8577, Japan, e-mail: tsuchiya@math.sci.ehime-u.ac.jp.

499


		webmaster@dml.cz
	2015-09-03T12:35:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




