期刊论文详细信息
PLoS Pathogens
Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection
Michael G. Katze1  Richard A. Koup1  Mathieu Iampietro2  Mukta Dutta2  Alexander Bukreyev2  Patrick Younan3  Ndongala Michel Lubaki3  Andrew Nishida4  Rodrigo I. Santos4 
[1] Department of Microbiology, University of Washington, Seattle, Washington, United States of America;Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America;Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America;University of Texas Medical Branch, Galveston, Texas, United States of America
关键词: T cells;    Apoptosis;    Cell death;    Flow cytometry;    Cell differentiation;    Immune receptor signaling;    Necrotic cell death;    Monocytes;   
DOI  :  10.1371/journal.ppat.1006397
学科分类:生物科学(综合)
来源: Public Library of Science
PDF
【 摘 要 】

Fatal outcomes of Ebola virus (EBOV) infections are typically preceded by a ‘sepsis-like’ syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correlative with fatalities. Here we investigated whether the addition of EBOV or its envelope glycoprotein (GP) to isolated primary human CD4+ T cells induced cell death. We observed a significant decrease in cell viability in a GP-dependent manner, which is suggestive of a direct role of GP in T cell death. Using immunoprecipitation assays and flow cytometry, we demonstrate that EBOV directly binds to CD4+ T cells through interaction of GP with TLR4. Transcriptome analysis revealed that the addition of EBOV to CD4+ T cells results in the significant upregulation of pathways associated with interferon signaling, pattern recognition receptors and intracellular activation of NFκB signaling pathway. Both transcriptome analysis and specific inhibitors allowed identification of apoptosis and necrosis as mechanisms associated with the observed T cell death following exposure to EBOV. The addition of the TLR4 inhibitor CLI-095 significantly reduced CD4+ T cell death induced by GP. EBOV stimulation of primary CD4+ T cells resulted in a significant increase in secreted TNFα; inhibition of TNFα-mediated signaling events significantly reduced T cell death while inhibitors of both necrosis and apoptosis similarly reduced EBOV-induced T cell death. Lastly, we show that stimulation with EBOV or GP augments monocyte maturation as determined by an overall increase in expression levels of markers of differentiation. Subsequently, the increased rates of cellular differentiation resulted in higher rates of infection further contributing to T cell death. These results demonstrate that GP directly subverts the host’s immune response by increasing the susceptibility of monocytes to EBOV infection and triggering lymphopenia through direct and indirect mechanisms.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902016219892ZK.pdf 5095KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:11次