期刊论文详细信息
Cellular Physiology and Biochemistry
Tetrahydroxystilbene Glucoside Protects Against Oxidized LDL-Induced Endothelial Dysfunction via Regulating Vimentin Cytoskeleton and its Colocalization with ICAM-1 and VCAM-1
关键词: Tetrahydroxystilbene glucoside;    Oxidized LDL;    Endothelial dysfunction;    Vimentin;   
DOI  :  10.1159/000366349
学科分类:分子生物学,细胞生物学和基因
来源: S Karger AG
PDF
【 摘 要 】

Background Endothelial cell dysfunction triggered by oxidized low-density lipoprotein (oxLDL) is the main event occurring during the development of atherosclerosis. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum, exhibits significant anti-atherosclerotic activity. However, the protective effects of TSG against oxLDL-induced endothelial dysfunction have not been clarified. We investigated the cytoprotective effects of TSG in human umbilical vein endothelial cells (HUVECs) and explored underlying mechanisms. Methods and Results TSG pretreatment markedly attenuated oxLDL-mediated loss of cell viability, release of lactate dehydrogenase (LDH), cell apoptosis, and monocyte adhesion. OxLDL increased vimentin mRNA and protein levels, vimentin cleavage, caspase-3 activation, adhesion molecules levels and their colocalization with vimentin in HUVECs. These alterations were attenuated by pretreatment with TSG. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by oxLDL. Using shRNA, oxLDL-induced cell apoptosis and monocyte adhesion were significantly inhibited by vimentin suppression in HUVECs. Conclusions These results suggest that TSG protects HUVECs against oxLDL-induced endothelial dysfunction through inhibiting vimentin expression and cleavage, and the expression of adhesion molecules and their colocalization with vimentin. The interruption of TGFβ/Smad pathway and caspase-3 activation appears to be responsible for the downregulation of TSG on vimentin expression and fragmentation, respectively.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201901237755849ZK.pdf 2487KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:17次