期刊论文详细信息
Commentationes mathematicae Universitatis Carolinae
On the adaptive wavelet estimation of a multidimensional regression function under $\alpha$-mixing dependence: Beyond the standard assumptions on the noise
Christophe Chesneau1 
关键词: nonparametric regression;    $\alpha$-mixing dependence;    adaptive estimation;    wavelet methods;    rates of convergence;   
DOI  :  
学科分类:物理化学和理论化学
来源: Univerzita Karlova v Praze * Matematicko-Fyzikalni Fakulta / Charles University in Prague, Faculty of Mathematics and Physics
PDF
【 摘 要 】

We investigate the estimation of a multidimensional regression function $f$ from $n$ observations of an $\alpha$-mixing process $(Y,X)$, where $Y=f(X)+\xi$, $X$ represents the design and $\xi$ the noise. We concentrate on wavelet methods. In most papers considering this problem, either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of $f$ in its construction) or it is supposed that $\xi$ is bounded or/and has a known distribution. In this paper, we go far beyond this classical framework. Under no boundedness assumption on $\xi$ and no a priori knowledge on its distribution, we construct adaptive term-by-term thresholding wavelet estimators attaining ``sharp'' rates of convergence under the mean integrated squared error over a wide class of functions $f$.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201901233491009ZK.pdf 63KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:15次