期刊论文详细信息
Cellular Physiology and Biochemistry
Sulphate and Chloride-Dependent Potassium Transport in Human Erythrocytes are Affected by Crude Venom from Nematocysts of the Jellyfish Pelagia noctiluca
关键词: Erythrocytes;    Oxidative stress;    Band 3 protein;    GSH;    Crude venom;    Pelagia noctiluca;   
DOI  :  10.1159/000356630
学科分类:分子生物学,细胞生物学和基因
来源: S Karger AG
PDF
【 摘 要 】

Background It has been reported that biologically active compounds extracted from Cnidaria venom may induce damage by oxidative stress. Erythrocytes are constantly exposed to oxidative stresses, which can contribute to sulphydril (SH-) group oxidation and cell membrane deformability accompanied with activation of K-Cl co-transport and inhibition of anion transport. In this regard, Band 3 protein is responsible for mediating the electroneutral exchange of chloride (Cl-) for bicarbonate (HCO3-), particularly in erythrocytes, where it is the most abundant membrane protein. The aim of this study was to elucidate the effect of crude venom extracted from Pelagia noctiluca nematocysts on Band 3 -mediated anion transport in human erythrocytes. Methods Erythrocytes were tested for SO42- uptake, K+ efflux, glutathione (GSH) levels and concentration of SH- groups. Results The rate constant of SO42- uptake decreased progressively to 58% of control with increasing venom doses, and showed a 28% decrease after 2 mM NEM treatment. These effects can be explained by oxidative stress, which was reflected by decreased GSH levels in venom-treated erythrocytes. Hence, the decreased efficiency of anion transport may be due to changes in Band 3 structure caused by SH-group oxidation and reduced GSH concentration. In addition, an increased Cl--dependent K+ efflux was observed in venom-treated erythrocytes. Conclusion Our results suggest that crude venom from Pelagia noctiluca alters cell membrane transport in human erythrocytes.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201901233253193ZK.pdf 1147KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:9次