Boundary value problems | |
Global well-posedness of the 3D incompressible porous media equation with critical dissipation in Triebel-Lizorkin spaces | |
Yanghai Yu1  Xing Wu1  Yanbin Tang1  | |
[1] School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, P.R. China | |
关键词: porous media equation; global well-posedness; fractional Laplacian; Triebel-Lizorkin spaces; 35Q35; 76D03; 76S05; | |
DOI : 10.1186/s13661-016-0625-4 | |
学科分类:数学(综合) | |
来源: SpringerOpen | |
【 摘 要 】
In this paper, we study the global well-posedness of the 3D incompressible critical dissipative porous media equation with small initial data in the Triebel-Lizorkin spaceFp,qs(R3)$F^{s}_{p,q}(\mathbb{R}^{3})$. By a pointwise exponential decay estimate on the Poisson semigroupe−tν−Δ$e^{-t\nu\sqrt{-\Delta}}$and the Fourier localization technique, we generalize the global well-posedness in the Sobolev spacesHps(R3)=Fp,2s(R3)$H_{p}^{s}(\mathbb{R}^{3})=F^{s}_{p,2}(\mathbb{R}^{3})$andHs(R3)=F2,2s(R3)$H^{s}(\mathbb {R}^{3})=F^{s}_{2,2}(\mathbb{R}^{3})$into the general Triebel-Lizorkin spacesFp,qs(R3)$F^{s}_{p,q}(\mathbb{R}^{3})$withs>3p$s>\frac{3}{p}$,p,q∈(1,∞)$p, q\in (1,\infty)$.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201901228735334ZK.pdf | 1467KB | download |