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1 Introduction
The incompressible flow in porous media bears important significance in mathematical
physics [1]. The Cauchy problem of the 3D incompressible dissipative porous media equa-

tion assumes the form

0, +u-VO+vA*9 =0, xeR3t>0,
u(t,x) = —k(Vp +gy0), xcR3t>0,
divu(t,x) =0,

6(0,x) = 0o(x), x eR3,

(1.1)

where 0 <a <2, A = /—A is the Zygmund operator, v > 0 is the dissipative coefficient,
scalar function 0 = (¢, x) is the liquid temperature, u = u(t, x) is the liquid discharge (flux
per unit area) to model the flow velocity by the Darcy law, k is the matrix of position-
independent medium permeabilities in the different directions, respectively, divided by
the viscosity, p is the pressure, g is the acceleration due to gravity and y € R? is the last
canonical vector es. For simplicity, we set g = 1 and k = I, the identity matrix.

The fractional Laplacian A® is defined through the Fourier transform

A%B(E) = £]°0(5), O<a<2.
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The cases 0 <o <1, @ =1, 1 <o < 2 are called supercritical, critical, subcritical, respec-
tively. Roughly speaking, the critical and supercritical cases are mathematically harder to
deal with than the subcritical case. For the fractional Laplacian A%, we refer the reader to
[1-4].

According to the Darcy law and the incompressibility condition, for x € R3 one has [1]

—A,u(t,x) = curl(curlu(t, x))
3%0 %0  9%6 9%
=\ y— 1t —= ]
3961 3963 3962 3963 396% 396%

using the Newton potential formula and integrating by parts, we have

u(t,x) = —%(0,0,G(t,x)) + ﬁl’.\/. /R3 K(x—y)0(t,y)dy

:=C(0) +S(0),

where the integral kernel is

3x1%3 3wpx3 2x3 — a7 — x5
I<( ): 5’ 5’ 5 »
x> |l ||

% = (x1,%,%3) € R%,and C = (C), S = (Si), 1 < k < 3, are all operators mapping scalar func-
tions to vector-valued functions and Cy equals a constant multiplication operator whereas
Sk means a Calderén-Zygmund singular integral operator.

The global and local well-posedness of the Cauchy problem (1.1) have been intensively
investigated in the last few years.

Cérdoba, Gancedo, and Orive [5] studied the analytical behavior of solutions with in-
finite energy in the case v = 0 (without dissipation) in the two dimensional space, they
obtained the local existence and uniqueness by the particle trajectory method in Holder
spaces C*(R?) for 0 < s < 1 and gave some blow-up criteria. Very recently, Cérdoba, Faraco,
and Gancedo [6] proved the non-uniqueness of solutions in L>°(T?) (T? is the two di-
mensional flat torus) in space and time, Bae and Granero-Belinchén [7] studied transport
equations with different nonlocal velocity fields and proved global weak solutions for very
rough initial data (merely L'*) for a one dimensional model of the incompressible porous
media equation, and one dimensional and # dimensional models of the dissipative incom-
pressible porous medium equation in the periodic domain.

Castro et al. [1] obtained the existence of strong solutions with regular initial data in the
Sobolev space 6y (x) € H*(RN) (s > 0) for the subcritical case 1 < a < 2. For the supercritical
case 0 < « < 1, they also obtained the local well-posedness in the space H*(RY), s > % +1,
and they extended it to be global under a smallness condition |6 ||s < cv on the initial
data 6y € H® with s > % + 1. In the critical case o = 1, the existence of strong solutions was
obtained. They also proved the global existence of weak solutions with 0 <« < 2.

Due to the method established by Hmidi and Keraani [8] for the quasi-geostrophic equa-
tion for 0 < @ <1, Xue [9] established the local well-posedness of the porous media equa-
tion (L.1) in the Besov space B;, ; (RY) (1 < p < 00,5 > 1+ % -a)andin B (RN)NBY, | (RY)
(s > 1-a), respectively. Furthermore, Xue [9] also obtained the global well-posedness with
small initial data in BI;% (RY).
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For the critical case « = 1, by the method of modulus of continuity [10] and the Fourier
localization technique, Yuan and Yuan [11] proved the global well-posedness in the critical
Besov space Bf’l(Rs), 1<p<oo.

Based on Besov space techniques and the method of modulus of continuity, Yamazaki
[12] studied the regularized IPM equation in the supercritical regime and the global well-
posedness was established in the Sobolev space H™(R?), m € Z*, m > %

We recall that the Triebel-Lizorkin space is a unification of most of the classical function
spaces used in partial differential equations such as Lebesgue space L#(RY), Sobolev space
H;(RN ) and Hoélder space C*(RN) for s > 0. Chae discussed the local well-posedness and
blow-up criterion in the Triebel-Lizorkin space, respectively, for the Euler equation in [13]
and for the quasi-geostrophic equation in [14]. Wang and Tang [15-17] studied the long
time dynamics of 2D quasi-geostrophic equations.

In this paper, we focus on the critical case o =1 in the Triebel-Lizorkin space F;'q(]R3)
with s > [%, P, q € (1,00). With the aid of the pointwise exponential decay estimate of the

. . _ o
fractional heat semigroup e~*"A",

e Af ()] < Ce P M(Af), jeZ, 1.2)

where A j is the Littlewood-Paley projection to the annulus {|£] ~ 2/} and M is the Hardy-
Littlewood maximal operator, if we work in a suitable space-time Triebel-Lizorkin space,
after integrating in time we can get « derivatives from (1.2). Especially, for « = 1, we can
obtain the first order derivative which exactly balances the nonlinear term.

Our main result reads as follows.

Theorem 1.1 Assume that o =1 and 0, € F;]q(R3) with s > f;,p,q € (1,00). If there exists a
positive constant € such that |6y B, <€ then the Cauchy problem (1.1) of 3D incompress-
ible critical dissipative porous media equation possesses a unique global solution 0(t,x)
such that

6(,%) € C([0, +00); F; ) NnL'(o, +oo;l'-";f;).

Remark 1.1 Since F;,(RY) = H;(RN ), Theorem 1.1 implies that the Cauchy problem
(1.1) has a global solution with small initial data in the Sobolev space H;(R3), s> %,

l<p<oo.

Throughout this paper, C stands for a constant which may vary from line to line. We
shall sometimes use the notation A < B instead of A < CB, and A ~ B means that A < B
and BS A.

2 Preliminaries
In this section, we provide a characterization of the Triebel-Lizorkin space based on the
Littlewood-Paley decomposition. We follow [13, 14, 18—20].

We start with the dyadic partition of unity. Choose two nonnegative radial functions
x,¢ € S(RY), supported, respectively, in the ball B = {§ € RV, |¢| < 3} and in the ring
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C={§ eRY,2 <|&| <3}, such that

XE)+) p(278) =1, £eRY, 2.1)
j=0

Y p(278) =1, £eRY¥\{0}. (2.2)

JjEL

Then for u € S'(RV), the homogeneous dyadic block A j» and the nonhomogeneous dyadic

block A; are defined as follows:

Aju(x) = (p(2_jD)u(x) =F! ((p(Z_jS)it(E))(x), Vj € Z; (2.3)

Ajulx)=0, j<-2 A_u = x(D)u, Aju(x) = (p(2‘7D)u, j=0. (2.4)
The homogeneous low-frequency cut-off operator Sj is defined by

Su=x(27D)u, jeZ. (2.5)
It is easily checked that

AjAu=0, |-kl >2. (2.6)

Aj(Seaubiu) =0, |j-k|l>5. (2.7)

Using the notations A/ and Sj, the usual product uv of two distributions # and v can be
decomposed into three parts in terms of the paraproduct operators introduced by Bony
[19].

Formally, we can write the homogeneous Bony paraproduct decomposition

uv="T,v+ T,u+R(u,v), (2.8)
where
T,v= ZS/AMA;'V; R(u,v) = Z Z Aj,vuA/v.
jez. jez <1

Let us now introduce the Triebel-Lizorkin spaces.

is

Definition 2.1 Let s € R, p,q € [1,00]. The homogeneous Triebel-Lizorkin space l'-";,q i

defined by
E (RY) = {u e S'(RN)/P(RY), lull,, < o0},
here §’'/P denotes the space of tempered distributions modulus polynomials and

itz = 112" A1) o vy
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The nonhomogeneous Triebel-Lizorkin space F, q(RN ) is defined by
F (RY) = {u e S'(RY), l|ullg, < oo}
with

leellzg,, (RY) = 1 (2°Am) 2y o | evy-

Remark 2.1 We point out that if s > 0, we have F;,q(RN) = I':;,q(RN) N LP(RN), then by the
definition of the nonhomogeneous Triebel-Lizorkin space, the Minkowski inequality, and
the fact that || A_jull» < C|lull1r, we get

lullgs,, ~ Nl + el

A ullg, + 1A ulzr
Remark 2.2 (Chae [13]) Ifs> %, F;,q(RN) < L®(RN), p,q € [1,00].

The following space-time Triebel-Lizorkin space will play an important role in the proof
of Theorem 1.1.

Definition 2.2 Lets € R, p,q,r € [1,00], I C R be an interval. The homogeneous space-
time Triebel-Lizorkin space L"(I; l"";, q(]RN ) is the set of all distributions satisfying

el zries, ) = 25N A2l @) e o o < 00

We can also define the inhomogeneous space-time Triebel-Lizorkin space (1 F, q(RN ).
By Remark 2.1, if s > 0,

Nz~ Wil + I2elzgar

~ Nl ) + 1A%l L ae)-
For simplicity, we use LZF;,,,: L’F;,q to denote L"(0, t; F;’q) and L"(0, oo;F;,q), respectively.
For alocally integrable function f, the Hardy-Littlewood maximal function Mf is defined
by

Mf(x) =su
f( ) r>(]§) |B(x:r)| Bx,r)

If )| dy,

where |B(x, r)| denotes the volume of the ball B(x, r) with center x and radius r.
The following vector-valued maximal inequality, which can be found in [21], plays a
fundamental tool in the proof of product estimate.

Lemma 2.1 (Vector-valued maximal inequality) Let1<p < 00,1 <q < 00, and {u;};cz, be
a sequence of functions in LP (7). Then we have

(1Ml S sl |-
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The following lemma is proved by Stein [22].

Lemma 2.2 Let ¢ be an integrable function on RN and the least decreasing radial majorant
of ¢ be integrable, i.e.,

/ sup |p(y)| dx = A < cc.
R

Nyl =]

Then for any u € LP(RN), 1 < p < oo, we have
supe™ |(u * p(e-)) (¥)| < AMu(x).
>0

Lemma 2.3 (Frazier-Torres-Weiss [23]) The Calderén-Zygmund singular integral opera-
tor is bounded from the Triebel-Lizorkin space I, , into itself.

Using Lemma 2.3, we can control # constantly by § modulus multiplication by a constant
in the space F,, .
Finally, let us recall the maximum principle.

Lemma 2.4 Let 0 be the smooth solution to the Cauchy problem (1.1) with « € (0,2). Then
we have

lo@)],, < 16O, 1=p=oo. 29)

Proof Hmidi and Keraani [8] established a maximum principle (2.9) for the quasi-
geostrophic equation and the result does not depend on the space dimension. Following
the idea of proof in [8] we can prove that (2.9) holds also for the 3D incompressible porous

media equation similarly. Here we omit it. d

Remark 2.3 We can get an explicit decay estimates of the L” norm in 6 using the methods
developed by Cérdoba and Cérdoba [24], however, the boundedness is enough for the
proof of Theorem 1.1.

3 Proof of Theorem 1.1
In this section, we prove Theorem 1.1. We divide the proof into four steps.

Step 1. A priori estimates. Firstly, we rewrite (1.1) in the following integral form:
t
0(t) = e "6, —/ e VAT L (uh)(s) dis, (3.1)
0

where we have used the fact that V- = 0.
Then localizing (3.1) through the Fourier localization operator A,- and using estimates
in Lemma A.2 in the Appendix, we get

|A0(8,2)| S e M(A;Bp)(x) + / 97 Y M(A(6)) (5, %) ds. (3.2)
0
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Taking L>, L! norm, respectively, with respect to £ on both sides of (3.2) and using Young’s

inequality give
[A8C,2)] 00 S M(A60)) + 2| M(A;6)) (,)]] 5. (3.3)

. 1__. . 1 .
I A/G(-,x)HL} S ;2"M(Aj90)(x) ts [ M(A;@0)) (%) ”L}. (3.4)
Multiplying 2% on both sides of (3.3), taking /4(Z) norm, then taking ¥ norm, we get

101zt5,, S 1601z, + 146117151,
due to the Lemma 2.1, using the product estimate in Lemma A.1 we obtain
10105, < W60z, + Nl o0 10 gy in + 1611z o 10l 3
S 1600l + ltllzops, 101755 + 1070055 Nl ppgs

according to the property of the Calderén-Zygmund singular integral operator in
Lemma 2.3 we get

||9||zgop1§,q S 0ol + ||9||z;p;,,+ql ”9”24501:;“1' (3.5)
Similarly to (3.5), we get
V||9||z}p[s,jtil S 6ol + ||9||Z%FIS7T{11||9||Z§>QFI§4' (3.6)
Combining (3.5), (3.6), and using Lemma 2.4, we get
”9”]:?01-"}57’[1 + V||9||z%p;,+ql S 6ollgs, + ||9||zip;,,+q1 ”9"[?01:;"]' (3.7)

Step 2. Approximate solutions and uniform estimates. We construct the following suc-
cessive approximate sequence {6"}:

9,01 + - VO™t YyAO™ =0, xeR3,t>0,
u" =C(O") + S(6"), xeR3,t>0,
divy” =0,

9n+1(0, x) = Sn+20();

where S; (7 > 0) are low-frequency cut-off operators which are defined similarly by (2.5):
Sju=x(27D)u, jeNUO.

Setting (6°,4°) = (0,0), and solving the linear system, we can find {#”,u"},cn for all

n € N. As in Step 1, we can deduce that

T P v

<C(]eg™

10" | zig 107 N zgers,, + 16" 10k (3.9)

Eq |‘9n+1 HZ}

i1 ).
Fq By )



Wu et al. Boundary Value Problems (2016) 2016:117 Page 8 of 14

If we take € > 0, such that ||6, g, <€ €= 17> then we claim that, forall n € N,

||9"||z«>p;,,q + ”||9”||zlﬁ;,,+q1 <2C|6ollE;,,- (3.10)
In fact, assume that
16" zocrs, + V16" |z = 2C160l1gy, -
It follows from (3.9) that
16" Nigors,, *+ 016" H 23z
C
= Clbollgy,, + (10" z0ers, + V10" |23z U™ zeps, + V16" N z350)
1
= Clibolgg, + 5 (10" [z, + 010" 1)
which implies (3.10).
Step 3. Compactness arguments and existence. We will show that the sequence {6”} has
a subsequence converging to a solution of the Cauchy problem (1.1) in D'(R* x R3). The
proof is based on compactness arguments.

Firstly, we show that 9,6" is uniformly bounded in space-time Triebel-Lizorkin L° (F;;Il).
By (3.8), we have

g P | e | P P P

< H un9n+1 9n+1

s, Y H E,’

due to the fact that £, (s > I%) is a Banach algebra and the property of the Calderén-

Zygmund singular integral operator in Lemma 2.3,

|| 8t9n+1

|9n+l

F

By = Hu” q +y||9”+1 pa

S s
F!’:q ly p2

<clol,, o, +vloe],. 611
On the other hand, since ZOOF;,q — L*F, , (3.10) and (3.11) imply that
la.0m! ||LOOF1§,_; < 00. (312)

Now let us turn to the proof of the existence. We note that for any ¢ € S(R?), the map
u > Yu is compact from H,, into H; for s > ¢, p < 00, together with the Sobolev embed-
ding

S S—€ _ pJS—€ P
prqL)Fp,z —Hp — I, Vs>e€,e>0,

we thus get the map u —> Y u is compact from F;,q(RB') into L7(R®). Thus by the Lions-
Aubin compactness theorem, we can conclude that there exist a subsequence {#"¢} and a
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function 6 such that

lim 6% =6 inL{ (R* x R®).

k—00

Moreover, the uniform estimate (3.10) allows us to conclude that 6(¢,x) € Z“F;’q N Zlﬁzf;,

and
101z00r5,, + 16l z1i50 < 2CN60lIEs,- (3.13)

Finally, by a standard limit argument, we can prove that the limit function 6 (¢, x) satisfies
the Cauchy problem (1.1) in the sense of distribution.

We still have to prove that 6(¢,x) € C(0, oo;F;,q). From the definition of the Triebel-
Lizorkin space and the Minkowski inequality we have

loe)-6(¢), < H (Z 2| A6() - AB(¢) V) ' H
.q e

J<N

1
. q
<§ 2’5‘1||A/9||z?0> ” , VNeN.
r

j=N

+2

From (3.13), for € > 0, there exists a number Ny € N such that

while

1
. q €
Jjsd || A .0 112 _
(2:2 ||A,9||L?o) Hfﬁx’

j=No

is q q
22088
e

j<No

(Z 25| A6(2) - AB(F) |q>

|, st-e1 ]
j<No L

N
Sle-)2 © 1190|001

Equation (3.12) allows us to finish the proof of continuity in time, that is, 0(¢,) €
C(0,00;F, ).

Step 4. Uniqueness. Assume that 0'(¢,x) € ZOOF;'q N le'-";fql is another solution of the
Cauchy problem (1.1) with the same initial data 6 (x).

Let 80 =0 — 0’ and 8u = u — v/, then (86, $u) satisfies the following Cauchy problem:

3,80 +u-V80 +VvASO = —8u-VO', xeR3t>0,
divu =0, (3.14)
§6(0,x) = 0.

Following the same procedure of estimate leading to (3.7), by Lemma A.l in the
Appendix and Lemma 2.3 we can obtain

18011750+ VIISOIL ot

Sl 801, gy + 8- 0 7 s
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S lotlzgpg 180170 ot + 180 005Nl s

~ 7 / ~ .

+10ullzeop |0 ”ilT;;qu + o ||Z%°F;,q 82123 e
I

S 180Uz, (101123521 + 10/ 52 £5)

+ 180U (1925085, + [0 2205, )- (3.15)

In order to get the estimates in the inhomogeneous mixed time-space Triebel-Lizorkin
space, it remains to estimate ||A_;(30)]| Lol To do this, we apply the operator A_; on
both sides of (3.14). Modifying slightly the proof of Proposition 6.2 in [8], together with
the maximum principle, Bernstein’s inequality [19], and Hélder’s inequality yield

T
||A,1(80)||L%OL£ 5/ |AL (8u- VO +u-V56)|,,dt
0
T
5/ |V - AL (0'8u + ust) |, dt
0
T
5/ 168w +us6 |, dt,
0

thus the property of Calderédn-Zygmund singular integral operator in Lemma 2.3 and the
Sobolev embedding F, , < L” (s > 0) imply that
T
|8460) |y < [ (el 13010 + Wouhur[0'] ) e
0
S T(100zes, + 10 | r;, )16 z5ess,- (3.16)
Combining (3.15) and (3.16), we get
180 Nzsers, + 196117 gt < C(1S050s, + 150131 j51)
(10025 + W+ D)0z, + 10 7205, ) + 1073 g520)-

Since 0(¢,x), 0'(t,x) satisfy (3.13), if € and T have been chosen small enough then it
follows that 86(¢,x) = 0 on [0, T] x R3. By a standard continuation argument, we can show
that 86(¢,x) = 0 in [0,00) x R3, i.e. O(t,x) = 0/ (£, %).

This completes the proof of Theorem 1.1.

Appendix

In this section, we provide the product estimate in the space-time Triebel-Lizorkin spaces
which is used in the proof of Theorem 1.1. Chen and Zhang [18] established the estimate
by the Littlewood-Paley trichotomy decomposition. Here we give a proof by the Bony
paraproduct technique.

Lemma A.1 (Product estimate) Assume that u,v € Z‘}O(F;'q(RN)) N ZlT(F;:;(RN)), s> %,
l<p<oo,1<g=<o0.Then

vl por < Clllzoe g IV gt + Nl W e ) (A1)

here C is a constant only depending on s.
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Proof Using Bony’s paraproduct decomposition and the property of quasi-orthogonality
(2.6)-(2.7), Vj € Z, we have

Ay = Y AGraubw) + Y ASavAa) + Y Y AAubw)

lk=jl<4 k—j| <4 k=j-3 |v|<1

=I+I+1I. (A.2)

Thus we have

loevligy g < @) il + -+ TN @SP N )i

=I'+I'+1I. (A.3)

We shall estimate the above three terms, respectively.
For the first term I’ on the RHS of (A.3), by using the Minkowski inequality, the Young
inequality, Lemma 2.1, and Lemma 2.2, we get

H <2f(s+1) Z HM(S/(—IMA/‘V)H%w)

k<4 JEL

I <

e

< H H <2j(s+1) Z ||u||L%oLgoHM(Akv)HL1T)

k<4 JeL

(3 2o 2 i, )
T/ jew

[k—jl<4

e

S lullzgerg

e

S Nellzgers [ IMEW )

S Maelzgerse [N @ PNAWIL )il o

S lellzeps VI g5 (A.4)
Similarly, for the second term II' on the RHS of (A.3), we have
1< L )
Trs ||'4||L1Tp;;q1 ||V”L°T°F§,q' (A.5)

Now, we turn to estimate the third term III’ on the RHS of (A.3). From the Young in-
equality, Lemma 2.1, and Lemma 2.2, we have

w2 X ¥ M ubin)

k>j-3 |v|<1 jez e
S lullgerge (2””” > ||M(Akv>nLl)
k=3 /) jezlallrp
j—k)(s+1 k(s+1) 11 A
S lulligerge (20 o) ZZ“”HAkanlT)
k>j-3 jezllalirp
S Nelzeerg V1173 isa- (A.6)

Summing up (A.4)-(A.6), we obtain the product estimate (A.1). O
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-a)%

Next we give a decay estimate of the fractional heat semigroup e~ on distribu-

tions with Fourier transforms supported in the annulus. The result is due to Chen and
Zhang [18] in the 2D case and was used in a crucial way for the proof of Theorem 1.1. For

convenience of the reader, we will give a short proof.
Lemma A.2 Let o € (0,2], j € Z. We have the following decay estimates:
e Af ()] < Ce " M(AS)(%), VxeR3,t>0, (A7)
eV - Af ()] < CPe? M(AS) ), YxeR%t>0, (A8)
where C and c are positive constants independent of ¢, j.

Proof We consider a function ¢ € D(R? \ B(0, i ), the value of which is identically 1 near
the annulus C = {§ € R, 3 < |£] < ). Denote

e Af () = F (e e ‘“qs(z*fg)Z}(g))(x) = Kj; % Aff (x), (A.9)

where Kj,(x) = (27)73 [5s eEI" $(27€)e™* dé. Since

K(w) = (271) 2% / eV g (£)e? € dg =2V (V),
R3

where IN(,-,t(x) =(27)7 [os e 2" B (£)eiE dE , we have

K 0)] < / e g S e, (A.10)
supp ¢

Next, we study the asymptotic behavior of f(j,t(x) for large x. Let L(x,D) = %, then

L(x,D)e*¢ = ¢ Consequently, L* = L*(x, D) = —%, then for any N, € N, we have

ilx|2’
R = 2m)* [ o2 )1 ¢+4) de
=@2n)° /R i (L) ((&)e 7 1) e E g, (A.11)
The integrand in (A.11) can be majorized by
e N max (1, (62716147, 027 £ 1N ) e P e
Thus, we have
—v®

’IN(/t(x)‘ <Cy, |x|—N*e—ctv2/°‘f (1 + tz}'a'E'a)N*e &1 dg
supp ¢

< Cyla[Nee=t?” (A.12)
Combining (A.10) and (A.12), we deduce that

K ()| < Cn, 2% (14 |2x]) ™.
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Now, we turn to the proof of the inequality (A.7). For N, > 3, we have

e Ayfto)

[ Kua-nisora)

IA

on 2 [ (1 =)™

Af )| dy

< Cy.2Ye?" [ /| |AfG)| dy

x—y|<27/

Lo e

=0 —1+l§|x7y|§2—]+l+l

s |

< Cy,2%e " [M(Ajfxx)z-ﬁ‘f £y / 27N Af )] dy}
>0

2—j+l§|x_y|§2—j+l+l

< CN* 23je—ctu2j°‘ [M(Alf)(x)z—?)j + Zz—lN*2—3j+31M(Alf)(x):|
>0

< Cn, e M(Af) (). (A13)

Thus we obtain the desired estimate (A.7).

Following the same procedure of estimate leading to (A.7), we can prove the estimate
(A.8) similarly. O
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