Journal of Space Weather and Space Climate | |
Reconstruction of the solar EUV irradiance from 1996 to 2010 based on SOHO/EIT images | |
and Seth Wieman3  Giulio Del Zanna1  Cis Verbeeck4  Benjamin Mampaey4  Véronique Delouille4  Margit Haberreiter2  | |
[1] DAMTP, Centre for Mathematical Sciences,Wilberforce Road,CambridgeCB3 0WA,UK;Physikalisch-Meteorologisches Observatorium and World Radiation Center,Dorfstrasse 33,CH-7260Davos Dorf,Switzerland;University of Southern California Space Sciences Center,835 Bloom Walk,Los Angeles,CA 90089,USA;STCE/Royal Observatory of Belgium,Avenue Circulaire 3,1180Brussels,Belgium | |
关键词: Space Weather; Spectral irradiance; Solar cycle; Sun; Corona; | |
Others : 1075701 DOI : doi:10.1051/swsc/2014027 |
|
received in 2013-10-10, accepted in 2014-08-28, 发布年份 2014 | |
【 摘 要 】
The solar Extreme UltraViolet (EUV) spectrum has important effects on the Earth’s upper atmosphere. For a detailed investigation of these effects it is important to have a consistent data series of the EUV spectral irradiance available. We present a reconstruction of the solar EUV irradiance based on SOHO/EIT images, along with synthetic spectra calculated using different coronal features which represent the brightness variation of the solar atmosphere. The EIT images are segmented with the SPoCA2 tool which separates the features based on a fixed brightness classification scheme. With the SOLMOD code we then calculate intensity spectra for the 10–100 nm wavelength range and each of the coronal features. Weighting the intensity spectra with the area covered by each of the features yields the temporal variation of the EUV spectrum. The reconstructed spectrum is then validated against the spectral irradiance as observed with SOHO/SEM. Our approach leads to good agreement between the reconstructed and the observed spectral irradiance. This study is an important step toward understanding variations in the solar EUV spectrum and ultimately its effect on the Earth’s upper atmosphere.
【 授权许可】
© M. Haberreiter et al., Published by EDP Sciences 2014
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20141113105655812.pdf | 3620KB | download |
【 参考文献 】
- [1]Barra, V., V. Delouille, and J.-F. Hochedez, Segmentation of extreme ultraviolet solar images via multichannel fuzzy clustering, Adv. Space Res., 42, 917–925, DOI: 10.1016/j.asr.2007.10.021, 2008. [NASA ADS]
- [2]BenMoussa, A., S. Gissot, U. Schühle, G. Del Zanna, F. Auchère, et al., On-orbit degradation of solar instruments, Sol. Phys., 288, 389–434, DOI: 10.1007/s11207-013-0290-z, 2013. [NASA ADS]
- [3]Bezdek, J., Pattern recognition with fuzzy objective function algorithms, Plenum Press, New-York, 1981.
- [4]Bochsler, P., H. Kucharek, E. Möbius, M. Bzowski, J.M. Sokół, L. Didkovsky, and S. Wieman, Solar photoionization rates for interstellar neutrals in the inner heliosphere: H, He, O, and Ne, Astrophys. J. Suppl. Ser., 210, 12, DOI: 10.1088/0067-0049/210/1/12, 2014.
- [5]Cessateur, G., T. Dudok de Wit, M. Kretzschmar, J. Lilensten, J.-F. Hochedez, and M. Snow, Monitoring the solar UV irradiance spectrum from the observation of a few passbands, A&A, 528, A68, DOI: 10.1051/0004-6361/201015903, 2011.
- [6]Cessateur, G., J. Lilensten, T. Dudok de Wit, A. BenMoussa, and M. Kretzschmar, New observation strategies for the solar UV spectral irradiance, J. Space Weather Space Clim., 2, A16, DOI: 10.1051/swsc/2012016, 2012.
- [7]Clette, F., J.-F. Hochedez, J.S. Newmark, J.D. Moses, F. Auchère, J.-M. Defise, and J.-P. Delaboudinière, The radiometric calibration of the extreme ultraviolet imaging telescope, ISSI Scientific Reports Series, 2, 121, 2002.
- [8]Delaboudinière, J.-P., G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, et al., EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission, Sol. Phys., 162, 291–312, DOI: 10.1007/BF00733432, 1995. [NASA ADS]
- [9]Dere, K.P., E. Landi, H.E. Mason, B.C. Monsignori Fossi, and P.R. Young, CHIANTI – an atomic database for emission lines, Astron. Astrophys. Suppl. Ser., 125, 149–173, DOI: 10.1051/aas:1997368, 1997. [NASA ADS]
- [10]Didkovsky, L.V., D.L. Judge, A.R. Jones, S. Wieman, and B.T. Tsurutani, Correction of SOHO CELIAS/SEM EUV measurements saturated by extreme solar flare events, Astron. Nachr., 328, 36–40, DOI: 10.1002/asna.200610667, 2007.
- [11]Didkovsky, L.V., D.L. Judge, S.R. Wieman, and D. McMullin. Minima of solar cycles 22/23 and 23/24 as seen in SOHO/CELIAS/SEM absolute solar EUV flux. In: S.R., Cranmer, J.T. Hoeksema, and J.L. Kohl, Editors,Astronomical Society of the Pacific Conference Series, 428, 73, 2010.
- [12]Dominique, M., J.-F. Hochedez, W. Schmutz, I.E. Dammasch, A.I. Shapiro, M. Kretzschmar, A.N. Zhukov, D. Gillotay, Y. Stockman, and A. BenMoussa, The LYRA instrument onboard PROBA2: description and in-flight performance, Sol. Phys., 286, 21–42, DOI: 10.1007/s11207-013-0252-5, 2013. [NASA ADS]
- [13]Dudok de Wit, T., and S. Bruinsma, Determination of the most pertinent EUV proxy for use in thermosphere modeling, Geophys. Res. Lett., 38, L19102, DOI: 10.1029/2011GL049028, 2011.
- [14]Dudok de Wit, T., S. Bruinsma, and K. Shibasaki, Synoptic radio observations as proxies for upper atmosphere modelling, J. Space Weather Space Clim., 4, A06, DOI: 10.1051/swsc/2014003, 2014.
- [15]Fontenla, J.M., W. Curdt, M. Haberreiter, J. Harder, and H. Tian, Semiempirical models of the solar atmosphereIII. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation, Astrophys. J., 707, 482–502, DOI: 10.1088/0004-637X/707/1/482, 2009. [NASA ADS]
- [16]Fontenla, J.M., J. Harder, W. Livingston, M. Snow, and T. Woods, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared, J. Geophys. Res. (Atmos.), 116, D20108, DOI: 10.1029/2011JD016032, 2011. [NASA ADS]
- [17]Haberreiter, M., Solar EUV spectrum calculated for quiet sun conditions, Sol. Phys., 274, 473–479, DOI: 10.1007/s11207-011-9767-9, 2011. [NASA ADS]
- [18]Haberreiter, M.. Towards the reconstruction of the EUV irradiance for solar cycle 23. In: C.H., Mandrini, and D.F. Webb, Editors, IAU Symposium, 286, 97–100, DOI: 10.1017/S174392131200470X, 2012.
- [19]Haberreiter, M., W. Schmutz, and A.G. Kosovichev, Solving the discrepancy between the seismic and photospheric solar radius, Astrophys. J., 675, L53–L56, DOI: 10.1086/529492, 2008. [NASA ADS]
- [20]Hinteregger, H.E., K. Fukui, and B.R. Gilson, Observational reference and model data on solar EUV, from measurements on AE-E, Geophys. Res. Lett., 8, 1147–1150, 1981. [NASA ADS]
- [21]Hochedez, J., W. Schmutz, Y. Stockman, U. Schühle, A. Benmoussa, et al., LYRA, a solar UV radiometer on Proba2, Adv. Space Res., 37, 303–312, DOI: 10.1016/j.asr.2005.10.041, 2006. [NASA ADS]
- [22]Hovestadt, D., M. Hilchenbach, A. Bürgi, B. Klecker, P. Laeverenz, et al., CELIAS – Charge, Element and Isotope Analysis System for SOHO, Sol. Phys., 162, 441–481, DOI: 10.1007/BF00733436, 1995. [NASA ADS]
- [23]Judge, D.L., D.R. McMullin, H.S. Ogawa, D. Hovestadt, B. Klecker, et al., First solar EUV irradiances obtained from SOHO by the CELIAS/SEM, Sol. Phys., 177, 161–173, DOI: 10.1023/A:1004929011427, 1998. [NASA ADS]
- [24]Kretzschmar, M., I.E. Dammasch, M. Dominique, J. Zender, G. Cessateur, and E. D’Huys, Extreme ultraviolet solar irradiance during the rising phase of solar cycle 24 observed by PROBA2/LYRA, J. Space Weather Space Clim., 2, A14, DOI: 10.1051/swsc/2012014, 2012.
- [25]Kretzschmar, M., J. Lilensten, and J. Aboudarham, Retrieving the solar EUV spectral irradiance from the observation of 6 lines, Advances in Space Research, 37, 341–346, DOI: 10.1016/j.asr.2005.02.029, 2006. [NASA ADS]
- [26]Krishnapuram, R., and J. Keller, A possibilistic approach to clustering, IEEE Trans. Fuzzy Systems, 1, 98–110, 1993.
- [27]Krishnapuram, R., and J. Keller, The possibilistic C-means algorithm: Insights and recommendations, IEEE Trans. Fuzzy Systems, 4, 385–393, 1996.
- [28]Landi, E., G. Delzanna, P.R. Young, K.P. Dere, H.E. Mason, and M. Landini, CHIANTI-An atomic database for emission lines. VII. New data for X-rays and other improvements, Astrophys. J. Suppl. Ser., 162, 261–280, DOI: 10.1086/498148, 2006. [NASA ADS]
- [29]Laštovička, J., Are trends in total electron content (TEC) really positive, J. Geophys. Res. (Space Phys.), 118, 3831–3835, DOI: 10.1002/jgra.50261, 2013
- [30]Lean, J.L., J.T. Emmert, J.M. Picone, and R.R. Meier, Global and regional trends in ionospheric total electron content, J. Geophys. Res. (Space Phys.), 116, A00H04, DOI: 10.1029/2010JA016378, 2011a.
- [31]Lean, J.L., T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, and J.S. Evans, Solar extreme ultraviolet irradiance: Present, past, and future, J. Geophys. Res. (Space Phys.), 116, A01102, DOI: 10.1029/2010JA015901, 2011b.
- [32]Lemen, J.R., A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 275, 17–40, DOI: 10.1007/s11207-011-9776-8, 2012. [NASA ADS]
- [33]Lilensten, J., T. Dudok de Wit, M. Kretzschmar, P.-O. Amblard, S. Moussaoui, J. Aboudarham, and F. Auchère, Review on the solar spectral variability in the EUV for space weather purposes, Ann. Geophys., 26, 269–279, 2008. [NASA ADS]
- [34]McMullin, D.R., D.L. Judge, M. Hilchenbach, F. Ipavich, P. Bochsler, P. Wurz, A. Burgi, W.T. Thompson, and J.S. Newmark, In-flight comparisons of solar EUV irradiance measurements provided by the CELIAS/SEM on SOHO, ISSI Scientific Reports Series, 2, 135, 2002.
- [35]Ogawa, H.S., D.R. McMullin, D.L. Judge, and R.S. Korde, Normal incidence spectrophotometer with high-density transmission grating technology and high-efficiency silicon photodiodes for absolute solar extreme-ultraviolet irradiance measurement, Opt. Eng., 32, 3121–3125, DOI: 10.1117/12.149195, 1993.
- [36]Qian, L., and S.C. Solomon, Thermospheric density: an overview of temporal and spatial variations, Space Sci. Res., 168, 147–173, DOI: 10.1007/s11214-011-9810-z, 2012.
- [37]Schmidtke, G., R. Brunner, D. Eberhard, B. Halford, U. Klocke, M. Knothe, W. Konz, W.-J. Riedel, and H. Wolf, SOL-ACES: Auto-calibrating EUV/UV spectrometers for measurements onboard the International Space Station, Adv. Space Res., 37, 273–282, DOI: 10.1016/j.asr.2005.01.112, 2006a.
- [38]Schmidtke, G., C. Fröhlich, and G. Thuillier, ISS-SOLAR: Total (TSI) and spectral (SSI) irradiance measurements, Adv. Space Res., 37, 255–264, DOI: 10.1016/j.asr.2005.01.009, 2006b.
- [39]Thuillier, G., J. Claudel, D. Djafer, M. Haberreiter, N. Mein, S.M.L. Melo, W. Schmutz, A. Shapiro, C.I. Short, and S. Sofia, The shape of the solar limb: Models and observations, Sol. Phys., 268, 125–149, DOI: 10.1007/s11207-010-9664-7, 2011. [NASA ADS]
- [40]Thuillier, G., G. Schmidtke, C. Erhardt, B. Nikutowski, A.I. Shapiro, et al., Solar spectral irradiance variability in November/December 2012: Comparison of observations by instruments on the international space station and models, Sol. Phys., DOI: 10.1007/s11207-014-0588-5, 2014.
- [41]Verbeeck, C., V. Delouille, B. Mampaey, and R. De Visscher, The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images, A&A, 561, A29, DOI: 10.1051/0004-6361/201321243, 2014.
- [42]Warren, H.P., J.T. Mariska, and J. Lean, A new model of solar EUV irradiance variability: 1. Model formulation, J. Geophys. Res., 106, 15,745–15,758, DOI: 10.1029/2000JA000282, 2001.
- [43]Wieman, S.R., L.V. Didkovsky, and D.L. Judge, Resolving differences in absolute irradiance measurements between the SOHO/CELIAS/SEM and the SDO/EVE, Sol. Phys., 289, 2907–2925, DOI: 10.1007/s11207-014-0519-5, 2014.
- [44]Wieman, S.R., D.L. Judge, and L.V. Didkovsky, Solar EUV Monitor (SEM) absolute irradiance measurements and how they are affected by choice of reference spectrum. Proc. SPIE, 8148, DOI: 10.1117/12.893163, 2011.
- [45]Woods, T.N., F.G. Eparvier, S.M. Bailey, P.C. Chamberlin, J. Lean, G.J. Rottman, S.C. Solomon, W.K. Tobiska, and D.L. Woodraska, Solar EUV Experiment (SEE): mission overview and first results, J. Geophys. Res. (Space Phys.), 110, A01312, DOI: 10.1029/2004JA010765, 2005. [NASA ADS]
- [46]Woods, T.N., F.G. Eparvier, R. Hock, A.R. Jones, D. Woodraska, et al., Extreme ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of science objectives, instrument design, data products, and model developments, Sol. Phys., 275, 115–143, DOI: 10.1007/s11207-009-9487-6, 2012. [NASA ADS]