期刊论文详细信息
Journal of Space Weather and Space Climate
Scintillations of the GPS, GLONASS, and Galileo signals at equatorial latitude
and Baylie Damtie2  Mogese Wassaie2  Norbert Jakowski1  Stefan Gewies1  Volker Wilken1  Jens Berdermann1  Nikolai Hlubek1 
[1] German Aerospace Center (DLR), Institute of Communications und Navigation (IKN),Kalkhorstweg 53,17235Neustrelitz,Germany;Washera Geospace and Radar Science Laboratory, Bahir Dar University,Ethiopia
关键词: Monitoring;    Irregularities;    Disturbances;    Positioning system;    Ionosphere (equatorial);   
Others  :  1075715
DOI  :  doi:10.1051/swsc/2014020
 received in 2014-03-19, accepted in 2014-07-04,  发布年份 2014
PDF
【 摘 要 】

Small scale ionospheric disturbances can lead to fluctuations of the received satellite signal, so-called signal scintillations. For global navigation satellite systems (GNSS) this reduces the positioning accuracy. Particular strong events can even lead to a loss of lock between satellite and receiver. All GNSS signals are affected by this phenomenon. The influence of the short scale disturbances on the different GNSS signals is expected to be different for each signal, since the signals are transmitted by different carrier frequencies and are constructed in different ways. In this paper, we compare the occurrence rate of signal scintillations between the different global navigation satellite systems and their different signal frequencies. In particular, we consider GPS L1, L2, and L5, GLONASS L1 and L2, and Galileo E1 and E5a. This analysis uses data from a high-rate GNSS station of the German Aerospace Center (DLR) placed in Bahir Dar, Ethiopia at 11°36′ N 37°23′ E. The station collects 50 Hz raw data from which the amplitude scintillation index S4 is calculated. The data has been collected for the whole year 2013. Since the number of strong scintillation events with S4 > 0.5 was smaller than expected, additionally weak scintillation events with S4 ≥ 0.25 are taken into account. An algorithm is used that provides a soft barrier for S4 ≥ 0.25. The resulting events are shown as daily and seasonal averages. Finally, the overall influence of short scale ionospheric disturbances in the form of signal scintillations on the GNSS signals is estimated.

【 授权许可】

   
© N. Hlubek et al., Published by EDP Sciences 2014

【 预 览 】
附件列表
Files Size Format View
20141113105927841.pdf 1220KB PDF download
【 参考文献 】
  • [1]Aarons, J., Equatorial scintillations: a review, IEEE Antennas Propag. Mag., 25 (5), 729–736, DOI: 10.1109/TAP.1977.1141649, 1977.
  • [2]Aarons, J., Global morphology of ionospheric scintillations, Proc. IEEE, 70 (4), 360–378, DOI: 10.1109/PROC.1982.12314, 1982.
  • [3]Aarons, J., The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63 (3–4), 209–243, DOI: 10.1007/BF00750769, 1993.
  • [4]Aarons, J., 50 years of radio-scintillation observations, IEEE Antennas Propagation Magazine, 39, 7–12, DOI: 10.1109/74.646785, 1997.
  • [5]Abdu, M.A., I.S. Batista, and J.H.A. Sobral, A new aspect of magnetic declination control of equatorial spread F and F region dynamo, J. Geophys. Res. [Space Phys.], 97 (A10), 14,897–14,904, DOI: 10.1029/92JA00826, 1992.
  • [6]Adewale, A.O., E.O. Oyeyemi, A.B. Adeloye, C.N. Mitchell, J.A. R. Rose, and P.J. Cilliers, A study of L-band scintillations and total electron content at an equatorial station, Lagos, Nigeria, Radio Science, 47 (2), RS2011, DOI: 10.1029/2011RS004846, 2012.
  • [7]Alfonsi, L., L. Spogli, M. Pezzopane, V. Romano, E. Zuccheretti, G. Defranceschi, M.A. Cabrera, and R.G. Ezquer, Comparative analysis of spread-F signature and GPS scintillation occurrences at Tucumán, Argentina, J. Geophys. Res. [Space Phys.], 118 (7), 4483–4502, DOI: 10.1002/jgra.50378, 2013.
  • [8]Basu, S., and S. Basu, Equatorial scintillations - a review, J. Atmos. Terr. Phys., 43 (5–6), 473–489, Equatorial Aeronomy – I, DOI: 10.1016/0021-9169(81)90110-0, 1981.
  • [9]Batista, I.S., M.A. Abdu, and J.A. Bittencourt, Equatorial F region vertical plasma drifts: seasonal and longitudinal asymmetries in the American sector, J. Geophys. Res. [Space Phys.], 91 (A11), 12,055–12,064, DOI: 10.1029/JA091iA11p12055, 1986.
  • [10]Beach, T., and P.M. Kintner, Development and use of a GPS ionospheric scintillation monitor, IEEE Trans. Geosci. Remote Sens., 39 (5), 918–928, DOI: 10.1109/36.921409, 2001.
  • [11]Béniguel, Y., J.-P. Adam, N. Jakowski, T. Noack, V. Wilken, J.-J. Valette, M. Cueto, A. Bourdillon, P. Lassudrie-Duchesne, and B. Arbesser-Rastburg, Analysis of scintillation recorded during the PRIS measurement campaign, Radio Science, 44 (1), RS0A30, DOI: 10.1029/2008RS004090, 2009.
  • [12]Berkner, L.V., and H.W. Wells, F-region ionosphereinvestigations at low latitudes, Terrestrial Magnetism and Atmospheric Electricity, 39 (3), 215–230, DOI: 10.1029/TE039i003p00215, 1934.
  • [13]Carrano, C.S., K.M. Groves, W.J. McNeil, and P.H. Doherty, Scintillation Characteristics across the GPS Frequency Band, in: 25th International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville TN, September 17–21, pp.1972–1989, https://www2.bc.edu/~carranoc/carrano-ion-2465.pdf, 2012.
  • [14]Circiu, M.-S., M. Felux, P. Remi, L. Yi, B. Belabbas, and S. Pullen, Evaluation of Dual Frequency GBAS Performance using Flight Data, in: Proceedings of the 2014 International Technical Meeting of The Institute of Navigation, San Diego, California, 645–656, http://elib.dlr.de/88286/, 2014.
  • [15]Conker, R.S., M.B. El-Arini, C.J. Hegarty, and T. Hsiao, Modeling the effects of ionospheric scintillation on GPS/Satellite-Based Augmentation System availability, Radio Science, 38 (1), 1–1–1–23. DOI: 10.1029/2000RS002604, 2003.
  • [16]Farley, D.T., B.B. Balsey, R.F. Woodman, and J.P. McClure, Equatorial spread F: implications of VHF radar observations, J. Geophys. Res., 75 (34), 7199–7216, DOI: 10.1029/JA075i034p07199, 1970.
  • [17]Kelley, M., Equatorial spread-F: recent results and outstanding problems, J. Atmos. Terr. Phys., 47, 745–752, DOI: 10.1016/0021-9169(85)90051-0, 1985.
  • [18]Kintner, P.M., B.M. Ledvina, and E.R. Depaula, GPS and ionospheric scintillations, Space Weather, 5 (9), S09003, DOI: 10.1029/2006SW000260, 2007.
  • [19]Kintner, P.M.J., GNSS and Ionospheric Scintillation - How to Survive the Next Solar Maximum, in: InsideGNSS, July/August, 22–30, http://www.insidegnss.com/auto/julyaug09-kintner.pdf, 2009.
  • [20]Liu, Y.-H., C.-H. Liu, and S.-Y. Su, Global and Seasonal Scintillation Morphology in the Equatorial Region Derived from ROCSAT-1 In-situ Data, Terr. Atmos. Ocean. Sci., 23, 95–106, DOI: 10.3319/TAO.2011.06.30.01(AA), 2012.
  • [21]Mayer, C., B. Belabbas, and W. Dunkel, Ionospheric Threat Model Assessment, in: ICAO NSP Meeting, 2009-03-17-2009-09-20, EUROCONTROL Experimental Centre, Bretigny (France), http://elib.dlr.de/58489/, 2009.
  • [22]Noack, T., E. Engler, and D. Klähn, High Rate Performance, Assessment of GNSS Raw Data Based on the DLR Experimentation and Verification Network, in: Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), September, Long Beach, CA, 573–583, http://elib.dlr.de/18935/, 2005.
  • [23]Ogawa, T., K. Sinno, M. Fujita, and J. Awaka, Severe disturbances of VHF and GHz waves from geostationary satellites during a magnetic storm, J. Atmos. Terr. Phys., 42 (7), 637–644, http://www.sciencedirect.com/science/article/pii/0021916980900987, 1980.
  • [24]Paznukhov, V.V., C.S. Carrano, P.H. Doherty, K.M. Groves, R.G. Caton, et al., Equatorial plasma bubbles and L-band scintillations in Africa during solar minimum, Ann. Geophys., 30 (4), 675–682, http://www.ann-geophys.net/30/675/2012/, 2012.
  • [25]SBAS Ionospheric Working Group Effect of Ionospheric Scintillations on GNSS - A White Paper, http://waas.stanford.edu/papers/IWG/sbas_iono_scintillations_white_paper.pdf, 2010.
  • [26]Shanmugam, S., J. Jones, A. MacAulay, and A.V. Dierendonck, Evolution to Modernized GNSS Ionospheric Scintillation and TEC Monitoring, in: Proceedings of IEEE/ION PLANS, Myrtle Beach, South Carolina, April 2012, pp. 265–273, DOI: 10.1109/PLANS.2012.6236891, 2012.
  • [27]Sreeja, V., M. Aquino, Z.G. Elmas, and B. Forte, Correlation analysis between ionospheric scintillation levels and receiver tracking performance, Space Weather, 10 (6), 1–2, S06005, DOI: 10.1029/2012SW000769, 2012.
  • [28]Sreeja, V.V., M. Aquino, B. Forte, Z. Elmas, C. Hancock, et al., Tackling ionospheric scintillation threat to GNSS in Latin America, J. Space Weather Space Clim., 1 (1), A05, DOI: 10.1051/swsc/2011005, 2011.
  • [29]Symeonidis, D., J. Fortuny-Guasch, C. O’Driscoll, and A.B. Martinez, Scintillation Parameter Estimation Using Unmodified Professional GNSS Receivers: a Feasibility Study, in: Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, September, 2580–2587, http://azimout.dyndns.org/pdfs/scintillation_parameter_estimation.pdf, 2011.
  • [30]Tsunoda, R.T., Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res. [Space Phys.], 90 (A1), 447–456, DOI: 10.1029/JA090iA01p00447, 1985.
  • [31]Tsunoda, R.T., On equatorial spread F: establishing a seeding hypothesis, J. Geophys. Res. [Space Phys.], 115 (A12), A12303, DOI: 10.1029/2010JA015564, 2010.
  • [32]Van Dierendonck, A., J. Klobuchar, and Q. Hua, Ionospheric Scintillation Monitoring Using Commercial Single Frequency C/A Code Receivers, in: Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), September Salt Lake City, UT, 1333–1342, http://www.ion.org/publications/abstract.cfm?articleID=4318, 1993.
  • [33]Woo, K., Optimum Semi-Codeless Carrier Phase Tracking of L2. NAVIGATION, Journal of The Institute of Navigation, 47, 82–99, http://www.ion.org/publications/abstract.cfm?jp=j&articleID=2272, 2000.
  文献评价指标  
  下载次数:11次 浏览次数:16次