期刊论文详细信息
Journal of Space Weather and Space Climate
A cosmic ray-climate link and cloud observations
Eimear M. Dunne1  Jaša Čalogović2  Enric Pallé3  Benjamin A. Laken3 
[1] Finnish Meteorological Institute, Kuopio Unit,70100 Kuopio,Finland;Hvar Observatory, Faculty of Geodesy, University of Zagreb,Kačićeva 26,10000 Zagreb,Croatia;Department of Astrophysics, Faculty of Physics, Universidad de La Laguna,38206 Tenerife,Spain
关键词: solar irradiance;    cosmic rays;    climate;    solar activity;    cloud;   
Others  :  800712
DOI  :  doi:10.1051/swsc/2012018
 received in 2012-06-18, accepted in 2012-11-10,  发布年份 2012
PDF
【 摘 要 】

Despite over 35 years of constant satellite-based measurements of cloud, reliable evidence of a long-hypothesized link between changes in solar activity and Earth’s cloud cover remains elusive. This work examines evidence of a cosmic ray cloud link from a range of sources, including satellite-based cloud measurements and long-term ground-based climatological measurements. The satellite-based studies can be divided into two categories: (1) monthly to decadal timescale analysis and (2) daily timescale epoch-superpositional (composite) analysis. The latter analyses frequently focus on sudden high-magnitude reductions in the cosmic ray flux known as Forbush decrease events. At present, two long-term independent global satellite cloud datasets are available (ISCCP and MODIS). Although the differences between them are considerable, neither shows evidence of a solar-cloud link at either long or short timescales. Furthermore, reports of observed correlations between solar activity and cloud over the 1983–1995 period are attributed to the chance agreement between solar changes and artificially induced cloud trends. It is possible that the satellite cloud datasets and analysis methods may simply be too insensitive to detect a small solar signal. Evidence from ground-based studies suggests that some weak but statistically significant cosmic ray-cloud relationships may exist at regional scales, involving mechanisms related to the global electric circuit. However, a poor understanding of these mechanisms and their effects on cloud makes the net impacts of such links uncertain. Regardless of this, it is clear that there is no robust evidence of a widespread link between the cosmic ray flux and clouds.

【 授权许可】

   
© Owned by the authors, Published by EDP Sciences 2012

【 预 览 】
附件列表
Files Size Format View
20140707203904924.pdf 2386KB PDF download
Fig. 6 31KB Image download
Fig. 5 52KB Image download
Fig. 4 37KB Image download
Figure 1 39KB Image download
Fig. 2 76KB Image download
Fig. 1 128KB Image download
【 图 表 】

Fig. 1

Fig. 2

Figure 1

Fig. 4

Fig. 5

Fig. 6

【 参考文献 】
  • [1]Agee, E., K. Kiefer, and E. Cornett, Relationship of lower-troposphere cloud cover and cosmic rays: an updated perspective, J. Clim., 25, 1057–1060, DOI: 10.1175/JCLI-D-11-00169.1, 2012.
  • [2]Angell, J.K., J. Korshver, and G.F. Cotton, Variations in United States cloudiness and sunshine, J. Clim. Appl. Meteorol., 23, 752–761, DOI: 10.1175/1520-0450, 1984.
  • [3]Beer, J., W. Mende, and R. Stellmacher, The role of the sun in climate forcing, Quat. Sci. Rev., 19, 403–415, DOI: 10.1016/S0277-3791(99)00072-4, 2000.
  • [4]Bond, G., B. Kromer, J. Beer, R. Muscheler, M. Evans, W. Showers, S. Hoffmann, R. Lotti-Bond, I. Hajdas, and G. Bonani, Persistent solar influence on North Atlantic climate during the Holocene, Science, 294, 2130–2136, DOI: 10.1126/science.1065680, 2001. [NASA ADS][PubMed]
  • [5]Brest, C., W. Rossow, and M. Roiter, Update of radiance calibrations for ISCCP, J. Atmos. Oceanic Technol., 14 (5), 1091–1109, 1997.
  • [6]Čalogović, J., C. Albert, F. Arnold, J. Beer, L. Desorgher, and E. Flueckiger, Sudden cosmic ray decreases: no change of global cloud cover, Geophys. Res. Lett., 37 (3), L03802, DOI: 10.1029/2009GL041327, 2010.
  • [7]Cane, H., Coronal mass ejections and Forbush decreases, Space Sci. Rev., 93 (1–2), 55–77, DOI: 10.1023/A:1026532125747, 2000. [NASA ADS]
  • [8]Campbell, G., View angle dependence of cloudiness and the trend in ISCCP cloudiness, paper presented at the 13th Conference on Satellite Meteorology and Oceanography, Am. Meterol. Soc, 20–23 September, Norfolk, VA, 2004.
  • [9]Carslaw, K., R. Harrison, and J. Kirkby, Cosmic rays, clouds and climate, Science, 298 (5599), 1732–1737, DOI: 10.1126/science.1076964, 2002.
  • [10]Clement, A., R. Burgman, and J. Norris, Observational and model evidence for positive low-level cloud feedback, Science, 325 (5939), 460–464, DOI: 10.1126/science.1171255, 2009.
  • [11]Dai, A., K. Trenberth, and T. Karl, Effects of Clouds, soil moisture, precipitation and water vapor on diurnal temperature range, J. Clim., 12 (8), 2451–2473, DOI: 10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2, 1999.
  • [12]Damon, P., and P. Laut, Pattern of strange errors plagues solar activity and terrestrial climate data, EOS, 85 (39), 370–374, DOI: 10.1029/2004EO390005, 2004.
  • [13]Dickinson, R., Solar variability and the lower atmosphere, Bull. Am. Meteorol. Soc., 56, 1240–1248, 1975.
  • [14]Dragić, A, I. Ancin, R. Banjanac, V. Udovicic, D. Jokovic, D. Maletic, and J. Puzovic, Forbush decreases – clouds relation in the neutron monitor era, Astrophys. Space Sci. Trans., 7, 315–318, DOI: 10.5194/astra-7-315-2011, 2011.
  • [15]Dumbović, M., B. Vršnak, J. Čalogović, and R. Župan, Cosmic ray modulation by different types of solar wind disturbances, A&A, 538, A28, DOI: 10.1051/0004-6361/201117710, 2011.
  • [16]Dunne, E., Comment on Effects of cosmic ray decreases on cloud microphysics by Svensmark et al., Atmos. Chem. Phys. Discuss., 12, C1000, 2012.
  • [17]Dunne, E., L. Lee, C. Reddington, and K. Carslaw, No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols, Atmos. Chem. Phys. Discuss., 12, 15373–15417, DOI: 10.5194/acpd-12-15373-2012, 2012.
  • [18]Eddy, J., The Maunder minimum, Science, 192 (4245), 1189–1202, 1976. [NASA ADS][PubMed]
  • [19]Enghoff, M., J. Pedersen, U. Uggerhøj, S. Paling, and H. Svensmark, Aerosol nucleation induced by a high energy particle beam, Geophys. Res. Lett., 38, L09805, DOI: 10.1029/2011GL047036, 2011.
  • [20]Evan, A., A. Heidinger, and D. Vimont, Arguments against a physical long-term trend in global ISCCP cloud amounts, Geophys. Res. Lett., 34, L04701, DOI: 10.1029/2006GL028083, 2007.
  • [21]Farrar, P., Are cosmic rays influencing oceanic cloud coverage: or is it only El Niño? Clim. Change, 47 (1–2), 7–15, DOI: 10.1023/A:1005672825112, 2000.
  • [22]Fleitmann, D., S. Burns, M. Mudelsee, U. Neff, J. Kramers, A. Mangini, and A. Mate, Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman, Science, 300 (5626), 1737–1739, DOI: 10.1126/science.1083130, 2003.
  • [23]Gray, L., J. Beer, M. Geller, J. Haigh, M. Lookwood, K. Mattheus, U. Cubasch, D. Fleitmann, R. Harrison, L. Hood, J. Luterbacher, G. Meehl, D. Shindell, B. van Geel, and W. White, Solar influences on climate, Rev. Geophys., 48, RD4001, 2010. [NASA ADS]
  • [24]Groisman, P, R. Bradley, and B. Sun, The relationship of cloud cover to near-surface temperature and humidity: Comparison of GCM simulations with empirical data, J. Clim., 13, 1858–1878, 2000.
  • [25]Hahn, C., and S. Warren, Extended edited synoptic reports from ships and land stations over the globe, 1952–1996, Rep. ORNL/CDIAC-123 Oak Ridge Natl. Lab. Oak Ridge Tenn, 1999.
  • [26]Haigh, J., The impact of solar variability on climate, Science, 272, 981–984, 1996. [NASA ADS][PubMed]
  • [27]Harrison, R., and M. Ambaum, Enhancement of cloud formation by droplet charging, Proc. R. Soc. A, 464, 2561–2573, DOI: 10.1098/rspa.2008.0009, 2008.
  • [28]Harrison, R., and D. Stephenson, Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds, Proc. R. Soc. A, 462, 1221–1233, DOI: 10.1098/rspa.2005.1628, 2006.
  • [29]Harrison, R., and M. Ambaum, Observing Forbush decreases in cloud at Shetland, J. Atmos. Sol. Terr. Phys., 72, 1408–1414, DOI: 10.1016/j.jastp.2010.09.025, 2010.
  • [30]Harrison, R., M. Ambaum, and M. Lockwood, Cloud base height and cosmic rays, Proc. R. Soc. A, 467, 2777–2791, DOI: 10.1098/rspa.2011.0040, 2011.
  • [31]Herschel, W., Observations tending to investigate the Nature of the Sun in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations, Philos. Trans. R. Soc. Lond., 91, 265–318, 1801.
  • [32]Kazil, J., E. Lovejoy, M. Barth, and K. O’Brien, Aerosol nucleation over oceans and the role of galactic cosmic rays, Atmos. Chem. Phys., 6 (12), 4905–4924, 2006.
  • [33]Kazil, J., K. Zhang, P. Stier, J. Feichter, U. Lohmann, and K. O’Brien, The present-day decadal solar cycle modulation of Earth’s radiative forcing via charged H2SO4/H2O aerosol nucleation, Geophys. Res. Lett., 29 (L02805), DOI: 10.1029/2011GL050058, 2012.
  • [34]Khain, A., M. Arkhipov, M. Pinsky, Y. Feldman, and Y. Ryabov, Rain enhancement and fog elimination by seeding with charged droplets. Part 1: theory and numerical simulations, J. Appl. Meteorol., 43, 1513–1529, DOI: 10.1175/JAM2131.1, 2004.
  • [35]King, M., Y. Kaufman, W. Menzel, and D. Tanre, Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS), IEEE Trans. Geosci. Remote Sens., 30, 2–27, 1992.
  • [36]Kirkby, J., J. Curtis, J. Almeida, E. Dunne, J. Duplissy, et al., Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429–433, DOI: 10.1038/nature10343, 2011.
  • [37]Knapp, K., Calibration assessment of ISCCP geostationary infrared observations using HIRS, J. Atmos. Ocean Technol., 25 (2), 183–DOI: 10.1175/2007JTECHA910.1, 2008.
  • [38]Kniveton, D., Precipitation, cloud cover and Forbush decreases in galactic cosmic rays, J. Atmos. Sol. Terr. Phys., 66, 1135–1142, DOI: 10.1016/j.jastp.2004.05.010, 2004.
  • [39]Kniveton, D., M. Todd, J. Sciare, and N. Mihalopoulos, Variability of atmospheric dimethylsulphide over the southern Indian Ocean due to changes in ultraviolet radiation, Global Biogeochem. Cycles, 17, 1096, DOI: 10.1029/2003GB002033, 2003.
  • [40]Kristjánsson, J., and J. Kristiansen, Is there a cosmic ray signal in recent variations in global cloudiness and cloud radiative forcing? J. Geophys. Res., 105, 11851–11863, DOI: 10.1029/2000JD900029, 2000.
  • [41]Kristjánsson, J., J. Kristiansen, and E. Kaas, Solar activity, cosmic rays, clouds and climate – an update, Adv. Space Res., 34, 407–415, DOI: 10.1016/j.asr.2003.02.040, 2004.
  • [42]Kristjánsson, J., C. Stjern, F. Stordal, A. Færaa, G. Myhre, and K. Jonasson, Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data, Atmos. Chem. Phys., 8, 7373–7387, DOI: 10.5194/acp-8-7373-2008, 2008.
  • [43]Kuang, Z., Y.Y. Jiang, and Y. Yung, Cloud optical thickness variations during 1983–1991: Solar cycle or ENSO? Geophys. Res. Lett., 25, 1415–1417, DOI: 10.1029/98GL00471, 1998.
  • [44]Laken, B., and J. Čalogović, Solar irradiance, cosmic rays and cloudiness over daily timescales, Geophys. Res. Lett., 38, L24811, DOI: 10.1029/2011GL049764, 2011.
  • [45]Laken, B., and D. Kniveton, Forbush decreases and Antarctic cloud anomalies in the upper troposphere, J. Atmos. Sol. Terr. Phys., 73, 371–376, DOI: 10.1016/j.jastp.2010.03.008, 2011.
  • [46]Laken, B., A. Wolfendale, and D. Kniveton, Cosmic ray decreases and changes in the liquid water cloud fraction over the oceans, Geophys. Res. Lett., 36, L23803, DOI: 10.1029/2009GL040961, 2009.
  • [47]Laken, B., D. Kniveton, and M. Frogley, Cosmic rays linked to rapid mid-latitude cloud changes, Atmos. Chem. Phys., 10, 10941–10948, DOI: 10.5194/acp-10-10941-2010, 2010.
  • [48]Laken, B., D. Kniveton, and A. Wolfendale, Forbush decreases, solar irradiance variations and anomalous cloud changes, J. Geophys. Res., 116, D09201, DOI: 10.1029/2010JD014900, 2011.
  • [49]Laken, B., and E. Pallé, Understanding sudden changes in cloud amount: the Southern Annular Mode and South American weather fluctuations, J. Geophys. Res., DOI: 10.1029/2012JD017626, 2012.
  • [50]Laken, B., E. Pallé, and H. Miyahara, A decade of the MODIS: is a link detectable, J. Clim., DOI: 10.1175/JCLI-D-11-00306.1, 2012a.
  • [51]Laken, B., J. Čalogović, J. Beer, and E. Pallé, Interactive comment on ‘Effects of cosmic ray decreases on cloud microphysics’ by Svensmark et al., Atmos. Chem. Phys. Discuss., 12, C962–C973, 2012b.
  • [52]Laken, B, J. Čalogović, T. Shahbaz, and E. Pallé, Examining a solar – climate link in diurnal temperature ranges, J. Geophys. Res., DOI: 10.1029/2012JD017683, 2012c.
  • [53]Laut, P., Solar activity and terrestrial climate: an analysis of some purported correlations, J. Atmos. Sol. Terr. Phys., 65, 801–812, DOI: 10.1016/S1364-6826(03)00041-5, 2003.
  • [54]Lockwood, M., Solar influence on global and regional climates, Surv. Geophys., DOI: 10.1007/s10712-012-9181-3, 2012.
  • [55]Marsh, N., and H. Svensmark, Low cloud properties influenced by cosmic rays, Phys. Rev. Lett., 85, 5004–5007, DOI: 10.1103/PhysRevLett.85.5004, 2000. [NASA ADS][PubMed]
  • [56]Marsh, N., and H. Svensmark, Solar influence on Earth’s climate, Space Sci. Rev., 107, 317–325, DOI: 10.1023/A:1025573117134, 2003.
  • [57]Meehl, G., J. Arblaster, G. Branstator, and H. van Loon, A coupled air – sea response mechanism to solar forcing in the Pacific region, J. Clim., 21, 2883–2897, DOI: 10.1175/2007JCLI1776.1, 2008.
  • [58]Neal, R., Probabilistic inference using Markov Chain Monte Carlo Methods, Technical report CRG-TR-93-1 University of Toronto, Dept. of Computer Sicence, 1993.
  • [59]Ney, E., Cosmic radiation and the weather, Nature, 183, 451–452, 1959.
  • [60]Nicoll, K., and R. Harrison, Experimental determination of layer cloud edge charging from cosmic ray ionisation, Geophys. Res. Lett., 37, L13802, DOI: 10.1029/2010GL043605, 2010.
  • [61]Norris, J., What can cloud observations tell us about climate variability, Space Sci. Rev., 94 (1–2), 375–380, DOI: 10.1023/A:1026704314326, 2000.
  • [62]Norris, J., Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, J. Geophys. Res., 110, D08206, DOI: 10.1029/2004JD005600, 2005.
  • [63]Pallé, E., Possible satellite perspective effects on the reported correlations between solar activity and clouds, Geophys. Res. Lett., 32, L03802, DOI: 10.1029/2004GL021167, 2005.
  • [64]Pallé, E., and C. Butler, The influence of cosmic rays on terrestrial clouds and global warming, Astron. Geophys., 41, 18–22, DOI: 10.1046/j.1468-4004.2000.00418.x, 2000.
  • [65]Pallé, E., and C. Butler, Sunshine record from Ireland: cloud factors and possible links to solar activity and cosmic rays, Int. J. Climatol., 21, 709–729, DOI: 10.1002/joc.657, 2001.
  • [66]Pallé, E., and C. Butler, The proposed connection between clouds and cosmic rays: cloud behaviour during the past 50–120 years, J. Atmos. Sol. Terr. Phys., 64 (3), 327–337, DOI: 10.1016/S1364-6826(01)0010505, 2002a.
  • [67]Pallé, E, and C. Butler, Comparison of sunshine records and synoptic cloud observations: a case study for Ireland, Phys. Chem. Earth, 27 (6–8), 405–414, DOI: 10.1016/S1474-7065(02)00020-7, 2002b.
  • [68]Pierce, J., and P. Adams, Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys. Res. Lett., 36, L09820, DOI: 10.1029/2009GL037946, 2009.
  • [69]Pincus, R., S. Platnick, S. Ackeran, R. Helmer, and R. Hofmann, Reconciling simulated and observed views of clouds: MODIS, ISCCP and the limits of instrument simulators, J. Clim., DOI: 10.1175/JCLI-D-11-00267.1, 2012.
  • [70]Ram, M., and M. Stolz, Possible solar influences on the dust profile of the GISP2 ice core from central Greenland, Geophys. Res. Lett., 26 (8), 1043–1046, DOI: 10.1029/1999GL900199, 1999.
  • [71]Ripley, B., Stochastic Simulation, Wiley, New York, 1987.
  • [72]Rossow, W., and R. Schiffer, ISCCP cloud data products, Bull. Am. Meteorol. Soc., 72 (1), 2–20, DOI: 10.1175/1520-0477(1991)072, 1991.
  • [73]Rosenfeld, D., Y. Kaufman, and I. Koren, Switching cloud cover and dynamical regimes from open to closed Bernard cells in response to the suppression of precipitation by aerosols, Atmos. Chem. Phys., 6, 2503–2511, DOI: 10.5194/acp-6-2503-2006, 2006.
  • [74]Rosenfeld, D., U. Lohmann, G. Raga, C. O’Dowd, M. Kulmala, and S. Fuzzi, A. Reissell, M. Andreae, Flood or drought: how do aerosols affect precipitation? Science, 321 (5894), 1309–1313, DOI: 10.1126/science.1160606, 2008.
  • [75]Rossow, W., and R. Schiffer, Advances in understanding of clouds from ISCCP, Bull. Am. Meterol. Soc., 80, 2261–2287, 1999. [NASA ADS]
  • [76]Roy, I., and J. Haigh, Solar cycle signals in sea level pressure and sea surface temperature, Atmos. Chem. Phys., 10 (6), 3147–3153, 2010.
  • [77]Snow-Kropla, E., J. Pierce, D. Westervelt, and W. Trivitayanurak, Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties, Atmos. Chem. Phys., 11, 4001–4013, DOI: 10.5194/acp-11-4001-2011, 2011.
  • [78]Sun, B., and R. Bradley, Solar influences on cosmic rays and cloud formation: a reassessment, J. Geophys. Res., 107 (4211), 4211, DOI: 10.1029/2001JD000560, 2002.
  • [79]Stordal, F., G. Myhre, E. Stordal, W. Rossow, D. Lee, D. Arlander, and T. Svendby, Is there a trend in cirrus cloud cover due to aircraft traffic? Atmos. Chem. Phys., 5, 2155–2162, DOI: 10.5194/acp-5-2155-2005, 2005.
  • [80]Svensmark, H., Cosmoclimatology: a new theory emerges, Astron. Geophys., 48 (1), 1.18–1.24, DOI: 10.1111/j.1468-4004.2007.48118.x, 2007.
  • [81]Svensmark, H., and E. Friis-Christensen, Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships, J. Atmos. Sol. Terr. Phys., 59 (11), 1225–1232, DOI: 10.1111/j.1468-4004.2007.48118.x, 1997.
  • [82]Svensmark, H., T. Bondo, and J. Svensmark, Cosmic ray decreases affect atmospheric aerosols and clouds, Geophys. Res. Lett., 36, L15101, DOI: 10.1029/2009GL038429, 2009.
  • [83]Svensmark, J., M. Enghoff, and H. Svensmark, Effects of cosmic ray decreases on cloud microphysics, Atmos. Chem. Phys. Discuss., 12, 3595–3617, DOI: 10.5194/acpd-12-3595-2012, 2012.
  • [84]Tinsley, B., The global atmospheric electric circuit and its effects on cloud microphysics, Rep. Prog. Phys., 71 (6), 066801, DOI: 10.1088/0034-4885/71/6/066801, 2008.
  • [85]Tinsley, B., Electric charge modulation of aerosol scavenging in clouds: rate coefficients with Monte Carlo simulation of diffusion, J. Geophys. Res., 115, D23211, DOI: 10.1029/2010JD014580, 2010.
  • [86]Tinsley, B., and G. Deen, Apparent tropospheric response to MeV-GeV particle flux variations: A connection via electrofreezing of supercooled water in high-level clouds? J. Geophys. Res., 96 (D12), 22283–22296, DOI: 10.1029/91JD02473, 1991.
  • [87]Tinsley, B., R. Rohrbaugh, M. Hei, and K. Beard, Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes, J. Atmos. Sci., 57 (13), 2118–2134, DOI: 10.1175/1520-0469(2000)057, 2000.
  • [88]Tinsley, B., L. Zhou, and W. Liu, The role of volcanic aerosols and relativistic electrons in modulating winter storm vorticity, Adv. Space Res., DOI: 10.1016/j.asr.2011.12.019, 2012.
  • [89]Todd, M., and D. Kniveton, Changes in cloud cover associated with Forbush decreases of galactic cosmic rays, J. Geophys. Res., 106 (D23), 32031–32041, DOI: 10.1029/2001JD000405, 2001.
  • [90]Todd, M., and D. Kniveton, Short-term variability in satellite-derived cloud cover and galactic cosmic rays: an update, J. Atmos. Sol. Terr. Phys., 66 (13–14), 1205–1211, DOI: 10.1016/j.jastp.2004.05.002, 2004.
  • [91]Troshichev, O., V. Vovk, and L. Egrova, IMF-associated cloudiness above near-pole station Vostok: impact on wind regime in winter Antarctica, J. Atmos. Sol. Terr. Phys., 70 (10), 1289–1300, DOI: 10.1016/j.jastp.2008.04.003, 2008.
  • [92]Twomey, S., Aerosols, clouds and radiation, Atmos. Environ. A, 25, 2435–2442, DOI: 10.1016/0960-1686(91)90159-5, 1991.
  • [93]Usoskin, I., and A. Kovaltsov, Cosmic rays and climate of the Earth: possible connection, C.R. Geosci., 340 (7), 441–450, DOI: 10.1016/j.crte.2007.11.001, 2008.
  • [94]Versteegh, G., Solar forcing of climate. 2: evidence from the past, Space Sci. Rev., 120 (3–4), 243–286, DOI: 10.1007/s11214-005-7047-4, 2005.
  • [95]Voiculescu, M., I. Usoskin, and K. Mursula, Different response of clouds to solar input, Geophys. Res. Lett., 33, L21802, DOI: 10.1029/2006GL027820, 2006.
  • [96]Voiculescu, M., I. Usoskin, and L. Georgescu, Are some clouds obscured in satellite view? Rom. J. Phys., 54 (1–2), 225–229, 2009.
  • [97]Wylie, D., and W. Menzel, Eight years of high cloud statistics using HIRS, J. Clim., 12 (1), 170–184, 1999.
  • [98]Wylie, D., W. Menzel, H. Woolf, and K. Strabala, Four years of global cirrus cloud statistics using HIRS, J. Clim., 7 (12), 1972–1986, DOI: 10.1175/1520-0442(1994)007, 1994.
  文献评价指标  
  下载次数:104次 浏览次数:37次