Journal of Space Weather and Space Climate | |
Extreme changes in the dayside ionosphere during a Carrington-type magnetic storm | |
Joseph D. Huba3  Gurbax S. Lakhina1  Anthony J. Mannucci4  Olga P. Verkhoglyadova2  Bruce T. Tsurutani4  | |
[1] Indian Institute of Geomagnetism,Navi Mumbai,Maharastra,India;CSPAR, University of Alabama,Huntsville,Alabama,USA;Naval Research Laboratory,Washington DC,USA;Jet Propulsion Laboratory, California Institute of Technology,Pasadena,California,USA | |
关键词: flares; coronal mass ejection (CME); electric field; ionosphere (mid latitude); ionosphere (equatorial); | |
Others : 800691 DOI : doi:10.1051/swsc/2012004 |
|
received in 2012-02-09, accepted in 2012-05-12, 发布年份 2012 | |
【 摘 要 】
It is shown that during the 30 October 2003 superstorm, dayside O+ ions were uplifted to DMSP altitudes (~850 km). Peak densities were ~9 × 105 cm−3 during the magnetic storm main phase (peak Dst = −390 nT). By comparison the 1–2 September 1859 Carrington magnetic storm (peak Dst estimated at −1760 nT) was considerably stronger. We investigate the impact of this storm on the low- to mid-latitude ionosphere using a modified version of the NRL SAMI2 ionospheric code. It is found that the equatorial region (LAT = 0° ± 15°) is swept free of plasma within 15 min (or less) of storm onset. The plasma is swept to higher altitudes and higher latitudes due to E × B convection associated with the prompt penetration electric field. Equatorial Ionization Anomaly (EIA) O+ density enhancements are found to be located within the broad range of latitudes ~ ± (25°–40°) at ~500–900 km altitudes. Densities within these peaks are ~6 × 106 oxygen ions-cm−3 at ~700 km altitude, approximately +600% quiet time values. The oxygen ions at the top portions (850–1000 km) of uplifted EIAs will cause strong low-altitude satellite drag. Calculations are currently being performed on possible uplift of oxygen neutrals by ion-neutral coupling to understand if there might be further significant satellite drag forces present.
【 授权许可】
© Owned by the authors, Published by EDP Sciences 2012
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140707203156751.pdf | 1318KB | download | |
Fig. 5 | 66KB | Image | download |
Fig. 4 | 73KB | Image | download |
Fig. 3 | 37KB | Image | download |
Fig. 2 | 76KB | Image | download |
Fig. 1 | 49KB | Image | download |
【 图 表 】
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
【 参考文献 】
- [1]Appleton, E.V., Two anomalies in the ionosphere, Nature, 157, 691, 1946. [NASA ADS]
- [2]Bolduc, L., GIC observations and studies in the Hydro-Quebec power system, J. Atmos. Sol. Terr. Phys., 64, 1793, 2002.
- [3]Carrington, R.C., Description of a singular appearance seen in the Sun on September 1, 1859, Mon. Not. R. Astron. Soc., 20, 13, 1859.
- [4]Echer, E., W.D. Gonzalez, and B.T. Tsurutani, Interplanetary conditions leading to superintense geomagnetic storms (Dst < −250 nT) during solar cycle 23, Geophys. Res. Lett., 35, L06S03, DOI: 10.1029/2007GL03175, 2008a.
- [5]Echer, E., W.D. Gonzalez, B.T. Tsurutani, and A.L.C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst < −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221, DOI: 10.1029/2007JA012744, 2008b. [NASA ADS]
- [6]Gonzalez, W.D., E. Echer, A.L. Clua de Gonzalez, B.T. Tsurutani, and G.S. Lakhina, Extreme geomagnetic storms, recent Gleissberg cycles and space era-superintense storms, J. Atmos. Sol. Terr. Phys., 73, 1447, 2011.
- [7]Gonzalez, W.D., J.A. Joselyn, Y. Kamide, H.W. Kroehl, G. Rostoker, B.T. Tsurutani, and V.M. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99 (A4), 5771, 1994. [NASA ADS]
- [8]Hapgood, M., Prepare for the coming space weather storm, Nature, 484, 311, 2012.
- [9]Hodgson, R., On a curious appearance seen in the Sun, Mon. Not. R. Astron. Soc., 20, 15, 1859.
- [10]Huang, C.-S., J.C. Foster, and M.C. Kelley, Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms, J. Geophys. Res., 110, A11309, DOI: 10.1029/2005JA011202, 2005.
- [11]Huba, J.D., K.F. Dymond, G. Joyce, S.A. Budzien, S.E. Thonnard, J.A. Fedder, and R.P. McCoy, Comparison of O+ density from ARGOS LORAAS data analysis and SAMI2 model results, Geophys. Res. Lett., 29 (7), 6-1, DOI: 10.1029/2001GL013089, 2002.
- [12]Huba, J.D., G. Joyce, and J.A. Fedder, Sami2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 105 (A10), 23035, 2000.
- [13]Kelley, M.C., B.G. Fejer, and C.A. Gonzales, An explanation for anomalous equatorial ionospheric electric field associated with a northward turning of the interplanetary magnetic field, Geophys. Res. Lett., 6 (4), 301, 1979.
- [14]Kelley, M.C., J.J. Makela, J.L. Chau, and M.J. Nicolls, Penetration of the solar wind electric field into the magnetosphere/ionosphere system, Geophys. Res. Lett., 30 (4), 1158, 2003.
- [15]Keskinen, M.J., E.P. Szuszczewicz, S.L. Ossakow, and J.C. Holmes, Nonlinear theory and experimental observations of the local collisional Rayleigh-Taylor instability in a descending equatorial spread F ionosphere, J. Geophys. Res., 86 (A7), 5785, 1981.
- [16]Koga, D., J.H.A. Sobral, W.D. Gonzalez, D.C.S. Arruda, M.A. Abdu, et al., Electrodynamic coupling processes between the magnetosphere and the equatorial ionosphere during a 5-day HILDCAA event, J. Atmos. Sol. Terr. Phys., 73, 148, 2011.
- [17]Lakhina, G.S., S. Alex, B.T. Tsurutani, and W.D. Gonzalez, Super magnetic storms: Hazzard to society, in Complexities and Extreme Events in Geosciences, eds. A.S. Sharma, A. Bunde, D. Baker, and V.P. Dimri, Geophysical Monograph Series, American Geophysical Union Press, Washington DC, 2012, in press.
- [18]Loomis, E., On the great auroral exhibition of Aug. 28th to Sept. 4, 1859, and on auroras generally, Am. J. Sci., 82, 318, 1861.
- [19]Mannucci, A.J., B.T. Tsurutani, M.A. Abdu, W.D. Gonzalez, A. Komjathy, E. Echer, B.A. Iijima, G. Crowley, and D. Anderson, Superposed epoch analysis of the dayside ionospheric response to four intense geomagnetic storms, J. Geophys. Res., 113, A00A02, DOI: 10.1029/2007HA012732, 2008.
- [20]Mannucci, A.J., B.T. Tsurutani, B.A. Iijima, A. Komjathy, A. Saito, W.D. Gonzalez, F.L. Guarnieri, J.U. Kozyra, and R. Skoug, Dayside global ionospheric response to the major interplanetary events of October 29-30 2003 “Halloween storms”, Geophys. Res. Lett., 32, L12S02, DOI: 10.1029/2004GL021467, 2005.
- [21]Namba, S., and K.-I. Maeda, Maeda, Radio Wave Propagation, Corona, Tokyo, p. 86, 1939.
- [22]Nishida, A., Coherence of geomagnetic DP2 fluctuations with interplanetary magnetic variations, J. Geophys. Res., 73, 5549, 1968.
- [23]Obayashi, T., The interaction of solar plasma with geomagnetic field, disturbed conditions, in Solar Terrestrial Physics, eds. J.W. King and W.S. Newman, Academic Press, London, 107, 1967.
- [24]Ossakow, S.L., Spread-F theories-a review, J. Atmos. Terr. Phys., 43, 437, 1981.
- [25]Prölss, G.W., Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes, J. Geophys. Res., 98, 5981, 1993.
- [26]Rostogi, R.G. and J.A. Klobuchar, Ionospheric electron content within the equatorial F2 layer anomaly belt, J. Geophys. Res., 95, 19045, 1990.
- [27]Sastri, J.H., K. Niranjan, and K.S.V. Subbarao, Response of the equatorial ionosphere in the Indian (midnight) sector to the severe magnetic storm of July 15, 2000, Geophys. Res. Lett., 29, 13, DOI: 10.1029/2002GL015133, 2002.
- [28]Siqueira, P.M., E.R. de Paula, M.T.A.H. Muella, L.F.C. Rezende, M.A. Abdu, and W.D. Gonzalez, Storm-time total electron content and its response to penetration electric fields over South America, Ann. Geophys., 29, 1765, 2011.
- [29]Sobral, J.H.A., M.A. Abdu, W.D. Gonzalez, W.D. Gonzalez, I. Batista, and A.L. Clua de Gonzalez, Low-latitude ionospheric response during intense magnetic storms at solar maximum, J. Geophys. Res., 102, 14305, 1997.
- [30]Sobral, J.H.A., M.A. Abdu, W.D. Gonzalez, C.S. Yamashita, A.L. Clua de Gonzalez, I. Batista, and C.J. Zamlutti, Responses of the low latitude ionosphere to very intense geomagnetic storms, J. Atmos. Sol. Terr. Phys., 63, 965, 2001.
- [31]Tsurutani, B.T., E. Echer, F.L. Guarnieri, and O.P. Verkhoglyadova, Interplanetary causes of middle latitude ionospheric disturbances, in Midlatitude Ionospheric Dynamics and Disturbances, eds. P. Kintner et al., Geophysical Monograph Series, American Geophysical Union Press, Washington DC, 181, 99, 2008a.
- [32]Tsurutani, B.T., W.D. Gonzalez, G.S. Lakhina, and S. Alex, The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108 (A7), DOI: 10.1029/2002JA009504, 2003. [NASA ADS]
- [33]Tsurutani, B.T., W.D. Gonzalez, F. Tang, S.-I. Akasofu, and E.J. Smith, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), J. Geophys. Res., 93, 8519, 1988. [NASA ADS]
- [34]Tsurutani, B.T., W.D. Gonzalez, F. Tang, and Y.T. Lee, Great magnetic storms, Geophys. Res. Lett., 19, 73, 1992. [NASA ADS]
- [35]Tsurutani, B.T., A. Mannucci, B. Iijima, M.A. Abdu, J.H.A. Sobral, et al., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., A08302, DOI: 10.1029/2003JA010342, 2004.
- [36]Tsurutani, B.T., O.P. Verkhoglyadova, A.J. Mannucci, T. Araki, A. Saito, T. Tsuda, and K. Yumoto, Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event, Ann. Geophys., 25, 1, 2007.
- [37]Tsurutani, B.T., O.P. Verkhoglyadova, A.J. Mannucci, A. Saito, T. Araki, et al., Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–32 October 2003, J. Geophys. Res., 113, A05311, DOI: 10.1029/2007JA012879, 2008b.
- [38]Verkhoglyadova, O.P., B.T. Tsurutani, and A.J. Mannucci, Modeling of time development of TEC variations during a superstorm event, eds. A. Bhardwaj, M. Duldig, and M. Duldig, Adv. Geosci., 112, 2007.
- [39]Verkhoglyadova, O.P., B.T. Tsurutani, A.J. Mannucci, A. Saito, T. Araki, D. Anderson, M. Abdu, and J.H.A. Sobral, Simulation of PPEF effects in dayside low-latitude ionosphere for the October 30, 2003 superstorm, in Midlatitude Ionospheric Dynamics and Disturbances, eds. P. Kintner, A. Coster, T. Fuller-Rowell, A. Mannucci, M. Mendillo, and R. Heelis, 169, 181, 2008.