期刊论文详细信息
Journal of Space Weather and Space Climate
The relativistic solar particle event of May 17th, 2012 observed on board the International Space Station
Veronica Zaconte2  Marco Stangalini4  Roberta Sparvoli2  Stefano Scardigli1  Piergiorgio Picozza2  Roberto Piazzesi1  Livio Narici2  Marianna Larosa2  Luca Di Fino2  Dario Del Moro1  Marco Casolino3  Francesco Berrilli1 
[1] Department of Physics, University of Roma Tor Vergata,Via Ricerca Scientifica 1,00133Rome,Italy;National Institute for Nuclear Physics, Tor Vergata Group,00133Rome,Italy;RIKEN, Hirosawa, Wako, Saitama351-0198,Japan;INAF-Osservatorio Astronomico di Roma,00040Monte Porzio Catone (RM),Italy
关键词: dose;    ground-level enhancement (GLE);    energetic particle;    coronal mass ejection (CME);    flares;    solar activity;   
Others  :  800621
DOI  :  doi:10.1051/swsc/2014014
 received in 2013-12-31, accepted in 2014-05-01,  发布年份 2014
PDF
【 摘 要 】

High-energy charged particles represent a severe radiation risk for astronauts and spacecrafts and could damage ground critical infrastructures related to space services. Different natural sources are the origin of these particles, among them galactic cosmic rays, solar energetic particles and particles trapped in radiation belts. Solar particle events (SPE) consist in the emission of high-energy protons, alpha-particles, electrons and heavier particles from solar flares or shocks driven by solar plasma propagating through the corona and interplanetary space. Ground-level enhancements (GLE) are rare solar events in which particles are accelerated to near relativistic energies and affect space and ground-based infrastructures. During the current solar cycle 24 a single GLE event was recorded on May 17th, 2012 associated with an M5.1-class solar flare. The investigation of such a special class of solar events permits us to measure conditions in space critical to both scientific and operational research. This event, classified as GLE71, was detected on board the International Space Station (ISS) by the active particle detectors of the ALTEA (Anomalous Long Term Effects in Astronauts) experiment. The collected data permit us to study the radiation environment inside the ISS. In this work we present the first results of the analysis of data acquired by ALTEA detectors during GLE71 associated with an M5.1-class solar flare. We estimate the energy loss spectrum of the solar particles and evaluate the contribution to the total exposure of ISS astronauts to solar high-energy charged particles.

【 授权许可】

   
© F. Berrilli et al., Published by EDP Sciences 2014

【 预 览 】
附件列表
Files Size Format View
20140707195218504.pdf 1845KB PDF download
Fig. 13. 22KB Image download
Fig. 12. 23KB Image download
Fig. 11. 20KB Image download
Fig. 10. 18KB Image download
Fig. 9. 50KB Image download
Fig 8. 24KB Image download
Fig. 7. 24KB Image download
Fig. 6. 25KB Image download
Fig. 5. 41KB Image download
Fig. 4. 103KB Image download
Fig. 3. 68KB Image download
Fig. 2. 97KB Image download
Fig. 1. 103KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

【 参考文献 】
  • [1]Augusto, C.R.A., V. Kopenkin, C.E. Navia, A.C.S. Felicio, F. Freire, et al., Was the GLE on May 17, 2012 linked with the M5.1-class flare the first in the 24th solar cycle? [arXiv:1301.7055, astro-ph.SR], 2013.
  • [2]Aschwanden, M.J., GeV particle acceleration in solar flares and Ground Level Enhancement (GLE) events, Space Sci. Rev., 171, 3–21, DOI: 10.1007/s11214-011-9865-x, 2012.
  • [3]Aschwanden, M.J., and S.L. Freeland, Automated solar flare statistics in soft X-rays over 37 years of GOES observations: The invariance of self-organized criticality during three solar cycles, Astrophys. J., 754, 112–126, DOI: 10.1088/0004-637X/754/2/112, 2012. [NASA ADS]
  • [4]Balabin, Yu.V., E.V. Vashenyuk, B.B. Gvozdevsky, and A.V. Germanenko Physics of auroral phenomena, Proc. XXXVI Annual Seminar, Apatity, Kola Science Centre, Russian Academy of Science, pp. 103–105, 2013.
  • [5]Benton, E.R., E.V. Benton, and A.L. Frank, Conversion between different forms of LET, Radiat. Meas., 45, 957–959, DOI: 10.1016/j.radmeas.2010.05.008, 2010.
  • [6]Benton, E.R., and E.V. Benton, Space radiation dosimetry in low-Earth orbit and beyond, Nucl. Instrum. Methods Phys. Res., Sect. B, 184, 255–294, DOI: 10.1016/S0168-583X(01)00748-0, 2001.
  • [7]Buetikofer, R., and E.O. Flueckiger, Radiation doses along selected flight profiles during two extreme solar cosmic ray events, Astrophys. Space Sci. Trans., 7, 105–109, DOI: 10.5194/astra-7-105-2011, 2011.
  • [8]Cid, C., H. Cremades, A. Aran, C. Mandrini, B. Sanahuja, et al., Can a halo CME from the limb be geoeffective? J. Geophys. Res., 117, A11102, DOI: 10.1029/2012JA017536, 2012.
  • [9]Di Fino, L., M. Casolino, C. De Santis, M. Larosa, C. La Tessa, L. Narici, P. Picozza, and V. Zaconte, Radiat. Res., 176, 397–406, DOI: 10.1667/RR2179.1, 2011.
  • [10]Di Fino, L., V. Zaconte, A. Ciccotelli, M. Larosa, and L. Narici, Fast probabilistic particle identification algorithm using silicon strip detectors, Adv. Space Res., 50, 408–414, DOI: 10.1016/j.asr.2012.04.015, 2012.
  • [11]Ellison, D.C., and R. Ramaty, Shock acceleration of electrons and ions in solar flares, Astrophys. J., 298, 400–408, DOI: 10.1086/163623, 1985. [NASA ADS]
  • [12]Firoz, K.A., W.Q. Gan, Y.P. Li, and J. Rodriguez-Pacheco, On the possible mechanism of the first ground level enhancement in cosmic ray intensity of solar cycle 24, Astrophys. Space Sci., 350 (1), 21–32, DOI: 10.1007/s10509-013-1729-2, 2014.
  • [13]Gopalswamy, N., H. Xie, S. Yashiro, S. Akiyama, P. Mkel, and I. Usoskin, Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23, Space Sci. Rev., 171, 23–60, DOI: 10.1007/s11214-012-9890-4, 2012.
  • [14]Hatton, C., The neutron monitor, in Progress in elementary particle and cosmic ray Physics X, vol. 43, North Holland Publishing Co, Amsterdam, ISBN: 9780720414103, 1971.
  • [15]Kudela, K., Space weather near Earth and energetic particles: selected results, J. Phys.: Conf. Ser., 409, article id. 012017, DOI: 10.1088/1742-6596/409/1/012017, 2013.
  • [16]Lantos, P., and N. Fuller, History of the solar flare radiation doses on-board aircraft using a semi-empirical model and concorde measurements, Radiat. Prot. Dosim., 104, 199–210, 2003.
  • [17]Larosa, M., F. Agostini, M. Casolino, C. De Santis, L. Di Fino, et al., On rates in the International Space Station during the December 2006 solar particle event, J. Phys. G: Nucl. Phys., 38, 095102, DOI: 10.1088/0954-3899/38/9/095102, 2011.
  • [18]Mishev, A., and I. Usoskin, Analysis of recent GLEs with the newly computed NM yield function, 33rd International Cosmic Ray Conference, Rio de Janeiro, 2013.
  • [19]Mishev, A.L., L.G. Kocharov, and I.G. Usoskin, Analysis of the ground level enhancement on May 17, 2012 using data from the global neutron monitor Network, J. Geophys. Res.: Space Phys., 119, 670–679, DOI: 10.1002/2013JA019253, 2014.
  • [20]Mountford, P.J., and D.H. Temperton, Recommendations of the international commission on radiological protection, Eur. J. Nucl. Med., 19, 77–79, DOI: 10.1007/BF00184120, 1992.
  • [21]Narici, L., Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight, New J. Phys., 10, article id. 075010, DOI: 10.1088/1367-2630/10/7/075010, 2008.
  • [22]Nitta, N.V., Y. Liu, M.L. DeRosa, and R.W. Nightingale, What are special about ground-level events? Space Sci. Rev., 171, 61–83, DOI: 10.1007/s11214-012-9877-1, 2012.
  • [23]Papaioannou, A., G. Souvatzoglou, P. Paschalis, M. Gerontidou, and H. Mavromichalaki, The first ground-level enhancement of solar cycle 24 on 17 May 2012 and its real-time detection, Solar Phys., 289, 423–436, DOI: 10.1007/s11207-013-0336-2, 2013.
  • [24]EURADOS, Cosmic Radiation Exposure of Aircraft Crew, Office for Official Publications of the European Communities, Luxembourg, ISBN: 92-894-8448-9, 2004.
  • [25]RAENG, Extreme space weather: impacts on engineered systems and infrastructure, Royal Academy of Engineering, London, ISBN: 1-903496-95-0, 2013.
  • [26]Shea, M.A., and D.F. Smart, A summary of major solar proton events, Solar Phys., 409, article id. 012148, DOI: 10.1007/BF00152170, 1990.
  • [27]Sihver, L., D. Matthiae, T. Koi, and D. Mancusi, Dose calculations at high altitudes and in deep space with GEANT4 using BIC and JQMD models for nucleusnucleus reactions, New J. Phys., 10, article id 105019, DOI: 10.1088/1367-2630/10/10/105019, 2008.
  • [28]Struminsky, A., Large SEP events of 2012: proton onset and source function, J. Phys.: Conf. Ser., 409, article id. 012148, DOI: 10.1088/1742-6596/409/1/012148, 2013.
  • [29]The IceCube Collaboration, M.G. Aartsen, R. Abbasi, Y. Abdou, M. Ackermann, J. Adams, et al., Ground level enhancement of May 17, 2012 observed at South Pole (paper 0368) [arXiv:1309.7006v2, astro-ph.HE], 2013.
  • [30]Vashenyuk, E.V., Yu.V. Balabin, and B.B. Gvozdevsky, Features of relativistic solar proton spectra derived from ground level enhancement events (GLE) modeling, 2011, Astrophys. Space Sci. Trans., 7, 459–463, DOI: 10.5194/astra-7-459-2011, 2011.
  • [31]Viticchié, B., D. Del Moro, and F. Berrilli, Statistical Properties of Synthetic Nanoflares, Astrophys. J., 652, 1734–1739, DOI: 10.1086/508332, 2006.
  • [32]Zaconte, V., F. Belli, V. Bidoli, M. Casoline, L. Di Fino, et al., ALTEA: The instrument calibration, 2008, Nucl. Instrum. Methods Phys. Res. B, 266, 2070–2078, DOI: 10.1016/j.nimb.2008.02.072, 2008.
  • [33]Zaconte, V., M. Casolino, L. Di Fino, C. La Tessa, M. Larosa, et al., High energy radiation fluences in the ISS-USLab: Ion discrimination and particle abundances, Radiat. Meas., 45, 168–172, DOI: 10.1016/j.radmeas.2010.01.020, 2010.
  • [34]Ziegler, J.F., SRIM-2003, Nucl. Instrum. Methods Phys. Res., Sect. B, 219, 1027–1036, DOI: 10.1016/j.nimb.2004.01.208, 2004.
  文献评价指标  
  下载次数:140次 浏览次数:45次