期刊论文详细信息
ETRI Journal
A Laterally-Driven Bistable Electromagnetic Microrelay
关键词: bistable;    Lorenz force;    electromagnetic;    Microrelay;   
Others  :  1185425
DOI  :  10.4218/etrij.06.0205.0138
PDF
【 摘 要 】

In this letter, a laterally-driven bistable electromagnetic microrelay is designed, fabricated, and tested. The proposed microrelay consists of a pair of arch-shaped leaf springs, a shuttle, and a contact bar made from silicon, low temperature oxide (LTO), and gold composite materials. Silicon-on-insulator wafers are used for electrical isolation and releasing of the moving microstructures. The high-aspect-ratio microstructures are fabricated using a deep reactive ion etching (DRIE) process. The tandem-typed leaf springs with a silicon/gold composite layer enhance the mechanical performances while reducing the electrical resistance. A permanent magnet is attached at the bottom of the silicon substrate, resulting in the generation of an external magnetic field in the direction vertical to the surface of the silicon substrate. The leaf springs show bistable characteristics. The resistance of the pair of leaf springs was 7.5 Ω, and the contact resistance was 7.7 Ω. The relay was operated at ±0.12 V.

【 授权许可】

   

【 预 览 】
附件列表
Files Size Format View
20150520111043844.pdf 274KB PDF download
【 参考文献 】
  • [1]H. G. Craighead, "Nanoelectromechanical Systems," Science, vol. 290, 2000, pp. 1532-1535.
  • [2]J. D. Williams, R. Yang, and W. Wang, "Numerical Simulation and Test of a UV-LIGA-Fabricated Electromagnetic Micro-relay for Power Applications," Sens. Actuators A, vol. 120, 2005, pp. 154-162.
  • [3]M. A. Gretillat, P. Thieubaud, N. F. Rooij, and C. Linder, "Integrated Circuit Compatible Electrostatic Polysilicon Microrelays," J. Micromech. Microeng., vol. 5, 1995, pp. 156-160.
  • [4]S. Zhou, X.-Q. Sun, and W. N. Carr, "A Monolithic Variable Inductor Network Using Microrelays with Combined Thermal and Electrostatic Actuation," J. Micromech. Microeng., vol. 9, 1999, pp. 45-50.
  • [5]J. Simon, S. Saffer, and C.-J. Kim, "A Liquid-Filled Microrelay with a Moving Mercury Microdrop," J. Microelectromech. Sys., vol. 6, 1997, pp. 208-216.
  • [6]C. H. Ahn and M. G. Allen, "A Planar Micromachined Spiral Inductor for Integrated Magnetic Microactuator Applications," J. Micromech. Microeng., vol. 3, 1993, pp. 37-44.
  • [7]A. Feustel, O. Krusemark, and J. Muller, "Numerical Simulation and Optimization of Planar Electromagnetic Actuators," Sens. Actuators A, vol. 70, 1998, pp. 276-282.
  • [8]M. Ohnmacht, V. Seidemann, and S. Buttgenbach, "Microcoils and Microrelays?An Optimized Multiplayer Fabrication Process," Sens. Actuators A, vol. 83, 2000, pp. 124-129.
  • [9]J. S. Ko, M. L. Lee, D. S. Lee, C. A. Choi, and Y. T. Kim, "Development and Application of a Laterally Driven Electromagnetic Microactuator," Appl. Phys. Lett., vol. 81, no. 3, 2002, pp. 547-549.
  • [10]J. S. Han, J. S. Ko, Y. T. Kim, and B. K. Kwak, "Parametric Study and Optimization of a Micro-optical Switch with a Laterally Driven Electromagnetic Microactuator," J. Micromech. Microeng., vol. 12, 2002, pp. 939-947.
  • [11]J. H. Lee, M. L. Lee, W. I. Jang, C. A. Choi, and J. W. Joo, "Bi-stable Planar Polysilicon Microactuators with Shallow Arch-Shaped Leaf Springs," Proc. SPIE, vol. 3876, 1999, pp. 274-282.
  文献评价指标  
  下载次数:12次 浏览次数:15次