期刊论文详细信息
Journal of Space Weather and Space Climate
Geomagnetic response to solar and interplanetary disturbances
Fridich Valach5  Dimitar Teodosiev8  Georgeta Maris1  Walter D. Gonzalez7  Crisan Demetrescu1  Dimitar Danov8  Josef Bochnicek2  Peter Stauning6  Petko Nenovski3  Pavel Hejda2  Venera Dobrica1  Consuelo Cid4  Yolanda Cerrato4  Elena Saiz4 
[1] Institute of Geodynamics, Romanian Academy,Bucharest,Romania;Institute of Geophysics of the ASCR,Prague,Czech Republic;National Institute for Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences,1113Sofia,Bulgaria;Space Research Group-Space Weather, Departamento de Física, Universidad de Alcalá,Madrid,Spain;Geomagnetic Observatory, Geophysical Institute, Slovak Academy of Sciences,Hurbanovo,Slovakia;Danish Meteorological Institute,Copenhagen,Denmark;Instituto Nacional de Pesquisas Espaciais (INPE), 12245-970 Sao Jose dos Campos,Sao Paulo,Brazil;Institute for Space Research and Technologies, Bulgarian Academy of Sciences,1113Sofia,Bulgaria
关键词: ring current;    ionosphere (general);    indices;    interplanetary medium;    solar activity;   
Others  :  800638
DOI  :  doi:10.1051/swsc/2013048
 received in 2012-06-01, accepted in 2013-06-23,  发布年份 2013
PDF
【 摘 要 】

The space weather discipline involves different physical scenarios, which are characterised by very different physical conditions, ranging from the Sun to the terrestrial magnetosphere and ionosphere. Thanks to the great modelling effort made during the last years, a few Sun-to-ionosphere/thermosphere physics-based numerical codes have been developed. However, the success of the prediction is still far from achieving the desirable results and much more progress is needed. Some aspects involved in this progress concern both the technical progress (developing and validating tools to forecast, selecting the optimal parameters as inputs for the tools, improving accuracy in prediction with short lead time, etc.) and the scientific development, i.e., deeper understanding of the energy transfer process from the solar wind to the coupled magnetosphere-ionosphere-thermosphere system. The purpose of this paper is to collect the most relevant results related to these topics obtained during the COST Action ES0803. In an end-to-end forecasting scheme that uses an artificial neural network, we show that the forecasting results improve when gathering certain parameters, such as X-ray solar flares, Type II and/or Type IV radio emission and solar energetic particles enhancements as inputs for the algorithm. Regarding the solar wind-magnetosphere-ionosphere interaction topic, the geomagnetic responses at high and low latitudes are considered separately. At low latitudes, we present new insights into temporal evolution of the ring current, as seen by Burton’s equation, in both main and recovery phases of the storm. At high latitudes, the PCC index appears as an achievement in modelling the coupling between the upper atmosphere and the solar wind, with a great potential for forecasting purposes. We also address the important role of small-scale field-aligned currents in Joule heating of the ionosphere even under non-disturbed conditions. Our scientific results in the framework of the COST Action ES0803 cover the topics from the short-term solar-activity evolution, i.e., space weather, to the long-term evolution of relevant solar/heliospheric/magnetospheric parameters, i.e., space climate. On the timescales of the Hale and Gleissberg cycles (22- and 88-year cycle respectively) we can highlight that the trend of solar, heliospheric and geomagnetic parameters shows the solar origin of the widely discussed increase in geomagnetic activity in the last century.

【 授权许可】

   
© E. Saiz et al., Published by EDP Sciences 2013

【 预 览 】
附件列表
Files Size Format View
20140707200317645.pdf 2577KB PDF download
Fig. 7. 86KB Image download
Fig. 6. 81KB Image download
Fig. 5. 43KB Image download
Fig. 4. 72KB Image download
Fig. 3. 81KB Image download
Fig. 2. 89KB Image download
(c) 57KB Image download
【 图 表 】

(c)

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Aguado, J., C. Cid, E. Saiz, and Y. Cerrato, Hyperbolic decay of the Dst index during the recovery phase of intense geomagnetic storms, J. Geophys. Res., 115, A07220, DOI: 10.1029/2009JA014658, 2010.
  • [2]Amory-Mazaudier, C., Sun Earth’s System: the transient variations of the Earth’s magnetic field. Edited by A. Hady, and M.I. Wanas, First Middle East-Africa, Regional IAU Meeting, Proceedings MEARIM, 1, 236–270, DOI: 10.1017/97740330200173, 2008.
  • [3]Andreasen, G., Reconstruction of past solar wind variations: inversion of the geomagnetic response at Godhavn, J. Geophys. Res., 102, A4, 7025–7036, 1997.
  • [4]Baumjohann, W., and R.A. Treumann, Basic Space Plasma Physics, Covent Garden, London: Imperial College Press, 103–128, ISBN: 1-86094-079-X, 1997.
  • [5]Boberg, F., P. Wintoft, and H. Lundstedt, Real time Kp predictions from solar wind data using neural networks, Phys. Chem. Earth, 25, 275–280, 2000.
  • [6]Bochníček, J., and P. Hejda, Areas of minimum intensity of soft X-rays as sources of solar wind high-speed streams, J. Atmos. Sol. Terr. Phys., 64, 511–515, 2002.
  • [7]Bochníček, J., P. Hejda, and F. Valach, Solar energetic events in the years 1996–2004. The analysis of their geoeffectiveness, Stud. Geophys. Geod., 51 (3), 439–447, DOI: 10.1007/s11200-007-0025-4, 2007.
  • [8]Bogdanova, Y.V., et al., Formation of the low-latitude boundary layer and cusp under the northward IMF: simultaneous observations by Cluster and Double Star, J. Geophys. Res., 113, A07S07, 1–33, DOI: 10.1029/2007JA012762, 2008.
  • [9]Borovsky, J.E., and M.H. Denton, Differences between CME-driven storms and CIR-driven storms, J. Geophys. Res., 111, A07S08, DOI: 10.1029/2005JA011447, 2006.
  • [10]Burton, R.K., R.L. McPherron, and C.T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80 (31), 4204–4214, DOI: 10.1029/JA080i031p04204, 1975.
  • [11]Caballero-Lopez, R., A.H. Moraal, K.G. McCracken, and F.B. McDonald, The heliospheric magnetic field from 850 to 2000 AD inferred from 10Be records, J. Geophys. Res., 109, A12102, DOI: 10.1029/2004JA010633, 2004.
  • [12]Campbell, W.H., Introduction to geomagnetic fields, 2nd Edn., Cambridge, UK: Cambridge University Press, 337 pp., 2003.
  • [13]Cane, H.V., R.G. Stone, J. Fainberg, J.L. Steinberg, and S. Hoang, Type II solar radio events observed in the interplanetary medium I: general characteristics, Sol. Phys., 78, 187–198, 1982.
  • [14]Cerrato, Y., E. Saiz, C. Cid, W. D. Gonzalez, and J. Palacios, Solar and interplanetary triggers of the largest Dst variations of the solar cycle 23, J. Atmos. Sol. Terr. Phys., 80, 111–123, DOI: 10.1016/j.jastp.2011.09.001, 2011.
  • [15]Chisham, G., M.P. Freeman, T. Sotirelis, R.A. Greenwald, M. Lester, and J.-P. Villain, A statistical comparison of SuperDARN spectral width boundaries and DMSP particle precipitation boundaries in the morning sector ionosphere, Ann. Geophys., 23, 733–743, DOI: 10.5194/angeo-23-733-2005, 2005.
  • [16]Chun, F.K., D.J. Knipp, M. G. McHarg, G. Lu, B.A. Emery, S. Vennerstrøm, and O.A. Troshichev, Polar cap index as a proxy for hemispheric Joule heating, Geophys. Res. Lett., 26, 1101–1104, 1999.
  • [17]Cid, C., H. Cremades, A. Aran, C. Mandrini, B. Sanahuja, B. Schmieder, M. Menvielle, L. Rodriguez, E. Saiz, Y. Cerrato, et al., Can a halo CME from the limb be geoeffective, J. Geophys. Res., 117, 25, A11102, DOI: 10.1029/2012JA017536, 2012.
  • [18]Cid, C., J. Palacios, E. Saiz, Y. Cerrato, J. Aguado, and A. Guerrero, Modeling the recovery phase of the extreme geomagnetic storms, J. Geophys. Res., 118, 1–8, DOI: 10.1002/jgra.50409, 2013 (under review).
  • [19]Cliver, E.W., V. Boriakoff, and K.H. Bounar, The 22-year cycle of geomagnetic activity, J. Geophys. Res., 101, 27091–27109, 1996.
  • [20]Cliver, E.W., V. Boriakoff, and J. Feynman, Solar variability and climate change: geomagnetic aa index and global surface temperature, Geophys. Res. Lett., 25, 1035–1038, 1998.
  • [21]Clilverd, M.A., E. Clarke, T. Ulich, J. Linthe, and H. Rishbeth, Reconstructing the long-term aa index, J. Geophys. Res., 110, A07205, DOI: 1029/2004JA010, 2005.
  • [22]Crooker, N.U., J.T. Gosling, V. Bothmer, R.J. Forsyth, P.R. Gazis, A. Hewish, T.S. Horbury, D.S. Intriligator, J.R. Jokipii, J. Kóta, et al., Turbulence, discontinuities, and energetic particles, Space Sci. Rev., 89, 179–220, DOI: 10.1023/A:1005253526438, 1999.
  • [23]Daglis, I.A., R.M. Thorne, W. Baumjohann, and S. Orsini, The terrestrial ring current: origin, formation, and decay, Rev. Geophys., 37 (4), 407–438, DOI: 10.1029/1999RG900009, 1999.
  • [24]Dasso, S., D. Gómez, and C.H. Mandrini, Ring current decay rates of magnetic storms: a statistical study from 1957 to 1998, J. Geophys. Res., 107 (A5), 1059, DOI: 10.1029/2000JA000430, 2002.
  • [25]Dasso, S., C.H. Mandrini, B. Schmieder, H. Cremades, C. Cid, Y. Cerrato, E. Saiz, P. De’moulin, A.N. Zhukov, L. Rodriguez, A. Aran, M. Menvielle, and S. Poedts, Linking two consecutive nonmerging magnetic clouds with their solar sources, J. Geophys. Res., 114, A02109, DOI: 10.1029/2008JA013102, 2008.
  • [26]De Keyser, J., M.W. Dunlop, C.J. Owen, B.U.Ö. Sonnerup, S.E. Haaland, A. Vaivads, G. Paschmann, R. Lundin, and L. Rezeau, Magnetopause and Boundary Layer, Space Sci. Rev., 118, 231–320, DOI: 10.1007/s11214-005-3834-1, 2005.
  • [27]De la Beaujardiere, O., R. Johnson, and V.B. Wickwar, , Ground-based measurements of Joule heating rates. Edited by C.-I. Meng, M.J. Rycroft, and L.A. Frank, Auroral Physics, Cambridge, England: Cambridge University Press, 436–448, ISBN-13: 9780521157414, 1991.
  • [28]Demetrescu, C., and V. Dobrica, Signature of Hale and Gleissberg solar cycles in the geomagnetic activity, J. Geophys. Res., 113, A02103, DOI: 10.1029/2007JA012570, 2008.
  • [29]Demetrescu, C., V. Dobrica, and G. Maris, On the long-term variability of the heliosphere-magnetosphere environment, Adv. Space Res., 46, 1299–1312, DOI: 10.1016/j.asr.2010.06.032, 2010.
  • [30]Dessler, A.J., and E.N. Parker, Hydromagnetic Theory of Geomagnetic Storms, J. Geophys. Res., 64, 2239–2252, 1959.
  • [31]Du, Z.L., The correlation between solar and geomagnetic activity – Part 2: long-term trends, Ann. Geophys., 29, 1341–1348, DOI: 10.5194/angeo-29-1341-2011, 2011.
  • [32]Du, A.M., B.T. Tsurutani, and W. Sun, Anomalous geomagnetic storm of 21–22 January 2005: a storm main phase during northward IMFs, J. Geophys. Res., 113, A10214, DOI: 10.1029/2008JA013284, 2008.
  • [33]Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47–48, 1961. [NASA ADS]
  • [34]Dunlop, M.W., Q.-H. Zhang, C.-J. Xiao, J.-S. He, Z. Pu, R.C. Fear, C. Shen, and C.P. Escoubet, Reconnection at high latitudes: antiparallel merging, Phys. Rev. Lett., 102, 075005, 2009.
  • [35]Ebihara, Y., M. Ejiri, and H. Miyaoka, Coulomb lifetime of the ring current ions with time varying plasmasphere, Earth Planets Space, 50 (4), 371–382, 1998.
  • [36]Echer, E., W.D. Gonzalez, A.L.C. Gonzalez, A. Prestes, L.E.A. Vieira, A. Dal Lago, F.L. Guarnieri, and N.J. Schuch, Long-term correlation between solar and geomagnetic activity, J. Atmos. Sol. Terr. Phys., 66, 1019–1025, 2004.
  • [37]Eddy, J.A., The case of the missing sunspots, Sci. Am., 236 (5), 80–92, DOI: 10.1038/scientificamerican0577-80, 1977. [NASA ADS]
  • [38]Fejer, B., and L. Scherliess, Empirical models of storm time equatorial zonal electric fields, J. Geophys. Res., 102 (A11), 24047–24056, DOI: 10.1029/97JA02164, 1997.
  • [39]Feldstein, Y.I., and L.A. Dremukhina, On the two‐phase decay of the Dst variation, J. Geophys. Res., 27 (17), 2813–2816, 2000.
  • [40]Feynman, J., and N.U. Crooker, The solar wind at the turn of the century, Nature, 275, 626, 1978.
  • [41]Feynman, J., and A. Ruzmaikin, The Sun’s strange behavior: Maunder minimum or Gleissberg cycle?, Sol. Phys., 272 (2), 351–363, DOI: 10.1007/s11207-011-9828-0, 2011.
  • [42]Finch, I., and M. Lockwood, Solar wind-magnetosphere coupling functions on timescales of 1 day to 1 year, Ann. Geophys., 25, 495–506, DOI: 10.5194/angeo-25-495-2007, 2007.
  • [43]Forget, B., J.-C. Cerisier, A. Berthelier, and J.-J. Bertheleier, Ionospheric closure of small-scale Birkeland currents, J. Geophys Res., 96 (A2), 1843–1847, DOI: 10.1029/90JA02376, 1991.
  • [44]Foster, J.C., and F.J. Rich, Prompt mid-latitude electric fields effects during severe geomagnetic storms, J. Geophys. Res., 103 (11), 26367–26372, DOI: 10.1029/97JA03057, 1998.
  • [45]Fuselier, S.A., J. Berchem, K.J. Trattner, and R. Friedel, Tracing ions in the cusp and low-latitude boundary layer using multispacecraft observations and a global MHD simulation, J. Geophys. Res., 107 (A9), 1226, DOI: 10.1029/2001JA000130, 2002.
  • [46]Gleisner, H., and H. Lundstedt, A neural network-based local model for prediction of geomagnetic disturbances, J. Geophys. Res., 106, 8425–8434, 2001.
  • [47]Gleisner, H., and H. Lundstedt, Auroral electrojet predictions with dynamic neural network, J. Geophys. Res., 106, 24541–24550, 2001.
  • [48]Gleisner, H., and J. Watermann, Solar energetic particle flux enhancement as an indicator of halo coronal mass ejection geoeffectivness, Space Weather – Inter. J. Res. Appl., 4, S06006, DOI: 10.1029/2006SW000220, 2006a.
  • [49]Gleisner, H., and J. Watermann, Concepts of medium-range (1–3 days) geomagnetic forecasting. Space weather prediction: applications and validation, Adv. Space Res., 37, 1116–1123, 2006b.
  • [50]Gopalswamy, N., Coronal Mass Ejections and Solar Radio Emissions. Edited by H. Rucker, W. Kurth, P. Louarn, and G. Fischer, Proceedings of the 7th International Workshop on Planetary, Solar and Heliospheric Radio Emissions (PRE VII), , 325–342, ISBN: 978-3-7001-7125-6, 2011.
  • [51]Hamilton, D.C., G. Gloeckler, F.M. Ipavich, W. Stüdemann, B. Wilken, and G. Kremser, Ring current development during the great geomagnetic storm of February 1986, J. Geophys. Res., 93 (12), 14343–14355, DOI: 10.1029/JA093iA12p14343, 1988.
  • [52]Hasegawa, H., et al., Rolled-up Kelvin-Helmholtz vortices and associated solar wind entry at Earth’s magnetopause, Nature, 430, 755–758, 2004.
  • [53]Hosokawa, K., E.E. Woodfield, M. Lester, S.E. Milan, N. Sato, A.S. Yukimatu, and T. Iyemori, Interhemispheric comparison of spectral width boundary as observed by SuperDARN radars, Ann. Geophys., 21, 1553–1565, 2003.
  • [54]Hughes, W.J., and M.K. Hudson, Towards an integrated model of the space weather system, J. Atmos. Sol. Terr. Phys., 66, 1241–1242, DOI: 10.1016/j.jastp.2004.06.001, 2004.
  • [55]Imber, S.M., S.E. Milan, and M. Lester, The Heppner-Maynard Boundary measured by SuperDARN as a proxy for the latitude of the auroral oval, J. Geophys. Res. Space Phys., 118, 685–697, DOI: 10.1029/2012JA018222, 2013.
  • [56]Janzhura, A., O.A. Troshichev, and P. Stauning, Unified PC indices: relation to isolated magnetic substorms, J. Geophys. Res., 112, A09207, DOI: 10.1029/2006JA012132, 2007.
  • [57]Johnson, J., and C. Cheng, Kinetic Alfven waves and plasma transport at the magnetopause, Geophys. Res. Lett., 242, 1423, DOI: 10.1029/97GL01333, 1997.
  • [58]Jordanova, V.K., L.M. Kistler, J.U. Kozyra, G.V. Kharanov, and A.F. Nagy, Collisional losses of ring current ions, J. Geophys. Res., 101, 111–126, 1996.
  • [59]Jordanova, V.K., A. Boonsiriseth, R.M. Thorne, and Y. Dotan, Ring current asymmetry from global simulations using a high‐resolution electric field model, J. Geophys. Res., 108 (12), 1443–1443, DOI: 10.1029/2003JA009993, 2003.
  • [60]Kan, J.R., and L.C. Lee, Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett., 6 (7), 577–580, DOI: 10.1029/GL006i007p00577, 1979. [NASA ADS]
  • [61]Kelley, M.C., The Earth’s ionosphere: plasma physics and electrodynamics, Intern. Geophys. Ser., San Diego: Academic Press, 1989.
  • [62]Kelley, M.C., and J. Retterer, First successful prediction of a convective equatorial ionospheric storm using solar wind parameters, Space Weather, 6, S08003, 4 pp., DOI: 10.1029/2007SW000381, 2008.
  • [63]Kim, R.S., K.S. Cho, Y.J. Moon, Y.H. Kim, Y. Yi, M. Dryer, S.C. Bong, and Y.D. Park, Forecast evaluation of the coronal mass ejection (CME) geoeffectiveness using halo CMEs from 1997 to 2003, J. Geophys. Res., 110, A11104, DOI: 10.1029/2005JA011218, 2005.
  • [64]Kosugi, T., and K. Shibata, Solar coronal dynamics and flares as a cause of interplanetary disturbances, in Magnetic Storms. Edited by B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo, Geophysical Monograph, 98, Washington D.C: AGU Press, 21–34, 1997.
  • [65]Kozyra, J.U., and M.W. Liemohn, Ring current energy input and decay, Space Sci. Rev., 109, 105–131, DOI: 10.1023/B: SPAC.0000007516.10433.ad, 2003.
  • [66]Kozyra, J.U., V.K. Jordanova, R.B. Home, and R.M. Thorne, Magnetic Storms. Edited by B.T. Tsurutani, et al., Geophys. Monogr. Ser., Vol. 98, Washington DC: AGU, DOI: 10.1029/GM098, ISSN: 0065-8448; ISBN: 0-87590-080-1, 187–202 1997.
  • [67]Kozyra, J.U., M.-C. Fok, E.R. Sanchez, D.S. Evans, D.C. Hamilton, and A.F. Nagy, The role of precipitation losses in producing the rapid early recovery phase of the great magnetic storm of February 1986, J. Geophys. Res., 103 (A4), 6801–6814, DOI: 10.1029/97JA03330, 1998.
  • [68]Kozyra, J.U., M.W. Liemohn, C.R. Clauer, A.J. Ridley, M.F. Thomsen, J.E. Borovsky, J.L. Roeder, V.K. Jordanova, and W.D. Gonzalez, Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm, J. Geophys. Res., 107 (8), 1224, DOI: 10.1029/2001JA000023, 2002.
  • [69]Krivova, N.A., L. Balmaceda, and S.K. Solanki, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux, A&A, 467, 335–346, DOI: 10.1051/0004-6361:20066725, 2007. [NASA ADS]
  • [70]Kuklin, G.V., Cyclical and secular variations of solar activity. Edited by V. Bumba, and J. Kleczek, Basic mechanisms of solar activity, IAU Symposium No. 71, Dordrecht-Holland/Boston, USA: D. Reidel Publishing Company, 147–190, ISBN-10: 9027706808, ISBN-13: 9789027706805, 1976.
  • [71]Lavraud, B., M.F. Thomsen, B. Lefebvre, S.J. Schwartz, K. Seki, T.D. Phan, Y.L. Wang, A. Fazakerley, H. Rème, and A. Balogh, Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF, J. Geophys. Res., 111, A05211, DOI: 10.1029/2005JA011266, 2006.
  • [72]Le Mouël, J.-L., V. Kossobokov, and V. Courtillot, On long-term variations of simple geomagnetic indices and slow changes in magnetospheric currents: the emergence of anthropogenic global warming after 1990?, Earth Planet. Sci. Lett., 232, 273–286, 2005.
  • [73]Lean, J., Evolution of the Sun’s spectral irradiance since the Maunder Minimum, Geophys. Res. Lett., 22, 2425–2428, 2000.
  • [74]Lean, J., J. Beer, and R. Bradley, Reconstruction of solar irradiance since 1610: implications for climate change, Geophys. Res. Lett., 22, 3195–3198, 1995. [NASA ADS]
  • [75]Lester, M., S.E. Millan, G. Provan, and J.A. Wild, Review of the ionospheric effects of solar wind magnetosphere coupling in the context of the expanding contracting polar cap boundary model, Space Sci. Rev., 124, 117–130, 2006.
  • [76]Liemohn, M.W., and J.U. Kozyra, Testing the hypothesis that charge exchange can cause a two‐phase decay. Edited by M. Burch, J.L. Burch, M. Schulz, and H. Spence, Inner Magnetosphere Interactions: New Perspectives from imaging, 159, Washington, D.C: AGU, Geophys. Monogr. Ser., ISBN: 978-0-87590-424-5, 67–178, 2005.
  • [77]Liemohn, M.W., J.U. Kozyra, C.R. Clauer, and A.J. Ridley, Computational analysis of the near-Earth magnetospheric current system during two-phase decay storms, J. Geophys. Res., 106 (A12), 29531–29542, DOI: 10.1029/2001JA000045, 2001.
  • [78]Lockwood, M., R. Stamper, and M.N. Wild, A doubling of the Sun’s coronal magnetic field during the past 100 years, Nature, 399, 437–439, 1999. [NASA ADS]
  • [79]Lockwood, M., A.P. Rouillard, and I.D. Finch, The rise and fall of open solar flux during the current grand solar maximum, Astrophys. J., 700, 937–944, DOI: 10.1088/004-637x/700/2/937, 2009. [NASA ADS]
  • [80]Lopez, R.E., M. Wiltberger, S. Hernandez, and J.G. Lyon, Solar wind density control of energy transfer to the magnetosphere, Geophys. Res. Lett., 31, L08804, DOI: 10.1029/2003GL018780, 2004.
  • [81]Lundstedt, H., P. Wintoft, H. Gleisner, F. Boberg, T. Hasanov, and I. Kronfeldt, Forecasting space weather and effects using knowledge-based neurocomputing. In: Proceedings of Space Weather Workshop: Looping Towards a European Space Weather Programme, Noordwijk, The Netherlands: ESA Publishing Division, 179–184, WPP-194, 2002a.
  • [82]Lundstedt, H., H. Gleisner, and P. Wintoft, Operational forecasts of geomagnetic Dst index, Geophys. Res. Lett., 29, 2181–2181, DOI: 10.1029/2002GL016151, 2002b.
  • [83]Marcucci, M.F., I. Coco, D. Ambrosino, E. Amata, S.E. Milan, M.B. Bavassano Cattaneo, and A. Retinò, Extended SuperDARN and IMAGE observations for northward IMF: evidence for dual lobe reconnection, J. Geophys. Res., 113, 1–12, A02204, DOI: 10.1029/2007JA012466, 2008.
  • [84]Masters, A., D.G. Mitchell, A.J. Coates, and M.K. Dougherty, Saturn’s low‐latitude boundary layer: 1. Properties and variability, J. Geophys. Res., 116, 1–13, A06210, DOI: 10.1029/2010JA016421, 2011.
  • [85]McCracken, K.G., Heliomagnetic field near Earth, 1428–2005, J. Geophys. Res., 112, A09106, DOI: 10.1029/2006JA012119, 2007.
  • [86]Menvielle, M., Geomagnetic indices in Geomagnetic Observations and Models. Edited by M. Mandea, and M. Korte, IAGA Special Sopron Book Series, Vol. 5, Springer Science+Business Media, 183–228, ISBN: 978-90-481-9857-3, DOI: 10.1007/978-90-481-9858-0_8, 2011.
  • [87]Monreal MacMahon, R., and C. Llop, Ring current decay time model during geomagnetic storms: a simple analytical approach, Ann. Geophys., 26, 2543–2550, 2008.
  • [88]Mursula, K., I.G. Usoskin, and G.A. Kovaltsov, Persistent 22-year cycle in sunspot activity: evidence for a relic solar magnetic field, Sol. Phys., 198, 51–56, 2001.
  • [89]Mursula, K., D. Martini, and A. Karinen, Did open solar magnetic field increase during the last 100 years? A reanalysis of geomagnetic activity, Sol. Phys., 224, 85–94, 2004.
  • [90]Nelson, G.J., and D.B. Melrose, Type II bursts. Edited by D.J. MacLean, and N.R. Labrum, Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths (A87–13851 03–92), New York: Cambridge Univ. Press, 333–359, ISBN: 978–0521254090, 1985.
  • [91]Nenovski, P., Comparison of simulated and observed large-scale field-aligned current structures, Ann. Geophys., 26 (2), 281–293, 2008.
  • [92]O’Brien, T.P., and R.L. McPherron, An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay, J. Geophys. Res., 105 (4), 7707–7719, DOI: 10.1029/1998JA000437, 2000.
  • [93]Oksavik, K., F. Søraas, J. Moen, and W.J. Burke, Optical and particle signatures of magnetospheric boundary layers near magnetic noon: satellite and ground-based observations, J. Geophys. Res., 105 (A12), 27555–27568, DOI: 101029/1999JA000237, 2000.
  • [94]Phan, T.-D., M. Oieroset, and M. Fujimoto, Reconnection at the dayside low-latitude magnetopause and its nonrole in low-latitude boundary layer formation during northward interplanetary magnetic field, Geophys. Res. Lett., 32, 1–2, DOI: 10.1029/2005GL023355, 2005.
  • [95]Pick, M., T.G. Forbes, G. Mann, H.V. Cane, J. Chen, A. Ciaravella, H. Cremades, R.A. Howard, H.S. Hudson, A. Klassen, et al., Multi-Wavelength Observations of CMEs and Associated Phenomena, Report of Working Group F, Space Sci. Rev., 123, 341, 2006. [NASA ADS]
  • [96]Prölss, G.W., Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes, J. Geophys. Res., 98, 5981–5991, DOI: 10.1029/92JA02777, 1993.
  • [97]Rangarajan, G.K., Indices of geomagnetic activity. Edited by J.A. Jacobs, Geomagnetism, Vol. 3, London: Academic Press, 385–460, 1989.
  • [98]Reiner, M.J., M.L. Kaiser, J. Fainberg, J.-L. Bougeret, and R.G. Stone, On the origin of radio emissions associated with the January 6-11, 1997, CME, Geophys. Res. Lett., 25 (14), 2493–2496, DOI: 10.1029/98GL00138, 1998.
  • [99]Richardson, I.G., and H.V. Cane, Solar wind drivers of geomagnetic storms during more than four solar cycles, J. Space Weather Space Clim., 2, A01, DOI: 10.1051/swsc/2012001, 2012a.
  • [100]Richardson, I.G., and H.V. Cane, Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011), J. Space Weather Space Clim., 2, A02, DOI: 10.1051/swsc/2012003, 2012b.
  • [101]Richardson, I.G., H.V. Cane, and E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000), J. Geophys. Res., 107, A8, DOI: 10.1029/2001JA00054, 2002.
  • [102]Robbrecht, E., and D. Berghmans, A broad perspective on automated CME tracking: towards higher level space weather forecasting. Edited by N. Gopalswamy, R. Mewaldt, and J. Torsti, Solar Eruptions and Energetic Particles, 165, Washington D.C: AGU Press, Geophysical Monograph Series, 33–41, 2006.
  • [103]Rodriguez, L., A.N. Zhukov, C. Cid, Y. Cerrato, E. Saiz, H. Cremades, S. Dasso, M. Menvielle, A. Aran, C. Mandrini, et al., Three frontside full halo coronal mass ejections with a nontypical geomagnetic response, Space Weather, 7, S06003, DOI: 10.1029/2008SW000453, 2009.
  • [104]Rouillard, A.P., M. Lockwood, and I. Finch, Centennial changes in the solar wind speed and in the open solar flux, J. Geophys. Res., 112, A05103, DOI: 10.1029/2006JA012130, 2007.
  • [105]Šafránková, J., Z. Němeček, L. Přech, J. Šimůnek, D. Sibeck, and J.-A. Sauvaud, Variations of the flank LLBL thickness as response to the solar wind dynamic pressure and IMF orientation, J. Geophys. Res., 112, A07201, DOI: 10.1029/2006JA011889., 2007.
  • [106]Saiz, E., C. Cid, and Y. Cerrato, Forecasting intense geomagnetic activity using interplanetary magnetic field data, Ann. Geophys., 26, 3989–3998, 2008.
  • [107]Schunk, R.W., and L. Zhu, Response of the ionosphere-thermosphere system to magnetospheric processes, J. Atmos. Solar Terr. Phys., 70 (18), 2358–2373, DOI: 10.1016/j.jastp.2008.07.003, 2008.
  • [108]Schwenn, R., Space weather: the solar perspective, Living Rev. Sol., 3, 5–72, lrsp-2006-2, 2006.
  • [109]Scopke, N., A General Relation between the Energy of Trapped Particles and the Disturbance Field near the Earth, J. Geophys. Res., 71, 3125–3130, 1966.
  • [110]Søraas, F., K. Aarsnes, K. Oksavik, M.I. Sandanger, D.S. Evans, and M.S. Greer, Evidence for particle injection as the cause of Dst reduction during HILDCAA events, J. Atmos. Solar-Terr. Phys., 66 (2), 177–186, DOI: 10.1016/j.jastp.2003.05, 2004.
  • [111]Stamper, R., M. Lockwood, M.N. Wild, and T.D.G. Clark, Solar causes of the long-term increase in geomagnetic activity, J. Geophys. Res., 104 (A12), 28325–28342, DOI: 10.1029/1999JA900311, 1999.
  • [112]Stauning, P., A new index for the interplanetary merging electric field and geomagnetic activity: application of the unified polar cap indices, Space Weather, 5, S09001, DOI: 10.1029/2007SW000311, 2007.
  • [113]Stauning, P., The Polar Cap PC indices: relations to solar wind and global disturbances. Edited by M. Lazar, Exploring the Solar Wind, InTech, Chap. 16, 357–398, DOI: 10.5772/37359, 2012.
  • [114]Stauning, P., O.A. Troshichev, and A. Janzhura, The Polar Cap (PC) index: relations to solar wind parameters and global activity level, J. Atmos. Solar-Terr. Phys., DOI: 10.1016/j.jastp.2008.09.028, 2008.
  • [115]Steinhilber, F., J.A. Abreu, J. Beer, and K.G. McCracken, Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides, J. Geophys. Res., 115, A01104, DOI: 10.1029/2009JA014193, 2010. [NASA ADS]
  • [116]Svalgaard, L., Geomagnetic activity: dependence on solar wind parameters. Edited by A. Zirker, Coronal Holes and High Speed Wind Streams, Colorado Assoc. Univ. Press, 371–441, 1978.
  • [117]Svalgaard, L., and E.W. Cliver, The IDV index: its derivation and use in inferring long-term variations of the interplanetary magnetic field strength, J. Geophys. Res., 110, A12103, DOI: 10.1029/2005JA011203, 2005. [NASA ADS]
  • [118]Svalgaard, L., and E.W. Cliver, Interhourly variability index of geomagnetic activity and its use in deriving the long-term variation of solar wind speed, J. Geophys. Res., 112, A10111, DOI: 10.1029/2007JA012437, 2007. [NASA ADS]
  • [119]Svalgaard, L., E.W. Cliver, and P. Le Sager, Determination of interplanetary magnetic field strength, solar wind speed, and EUV irradiance. Edited by A. Wilson, International Solar Cycle Studies Symposium, Tatranska Lomnica, Slovak Republic, Proceedings (ESA SP-535), 15–24, 2003.
  • [120]Svalgaard, L., E.W. Cliver, and P. Sager, IHV: a new long-term geomagnetic index, Adv. Space Res., 34, 1–2, DOI: 10.1016/j.asr.2003.01.029, 2004.
  • [121]Takahashi, S., T. Iyemori, and M. Takeda, A simulation of the storm time ring current, Planet. Space Sci., 38 (9), 1133–1141, DOI: 10.1016/0032-0633(90)90021-H, 1990.
  • [122]Teodosiev, D., E. Yordanova, P. Nenovski, T. Nikolova, D. Danov, G. Crowley, L. Baddeley, and S. Buchert, Ion Temperature Distribution in the High-Latitude Region, Comptes Rendus (EISCAT UHF Radar Observations). What is the Field-aligned Currents Influence?, Acad. Bul. Sci., 64 (5), 729–736, 2011.
  • [123]Thomson, A.W.P., C.T. Gaunt, P. Cilliers, J.A. Wild, B. Opperman, L.A. McKinnell, P. Kotze, C.M. Ngwira, and S.I. Lotz, Present dat challenges in understanding the geomagnetic hazard to national power grids, Adv. Space Res., 45, 1182–1190, 2010.
  • [124]Tóth, G., I.V. Sokolov, T.I. Gombosi, D.R. Chesney, C.R. Clauer, D.L. DeZeeuw, K.C. Hansen, K.J. Kane, W.B. Manchester, R.C. Oehmke, et al., Space Weather Modeling Framework: a new tool for the space community, J. Geophys. Res., 110, A12226, DOI: 10.1029/2005JA011126, 2005.
  • [125]Troshichev, O.A., Ground-based Monitoring of the Solar Wind Geoefficiency. Edited by M. Lazar, Exploring the Solar Wind, InTech, Chap. 15, 337–356, DOI: 10.5772/38227, ISBN 978-953-51-0339-4, http://www.intechopen.com/books/exploring-the-solar-wind/ground-based-monitoring-of-the-solar-wind-geoefficiency, 2012.
  • [126]Troshichev, O.A., V.G. Andrezen, S. Vennerstrøm, and E. Friis-Christensen, Magnetic activity in the polar cap – a new index, Planet. Space Sci., 36, 1095–1102, 1988.
  • [127]Troshichev, O.A., A. Janzhura, and P. Stauning, Unified PCN and PCS indices: method of calculation, physical sense and dependence on the IMF azimuthal and northward components, J. Geophys. Res., 111, A05208, DOI: 10.1029/2005JA011402, 2006.
  • [128]Tsurutani, B.T., and W.D. Gonzalez, The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains, Planet. Space Sci., 35, 405–412, 1987. [NASA ADS]
  • [129]Tsurutani, B., A. Mannucci, B. Iijima, M.A. Abdu, J.H.A. Sobral, W. Gonzalez, F. Guarnieri,, T. Tsuda, A. Saito, and K. Yumoto, et al., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, DOI: 10.1029/2003JA010342, 2004.
  • [130]Turner, N.E., W. Douglas Cramer, S.K. Earles, and B.A. Emery, Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Solar Terr. Phys., 71 (10–11), 1023–1031, 2009.
  • [131]Twitty, C., T.D. Phan, G. Paschmann, B. Lavraud, H. Rème, and M. Dunlop, Cluster survey of cusp reconnection and its IMF dependence, Geophys. Res. Lett., 31, L19808, DOI: 10.1029/2004GL020646, 2004.
  • [132]Usoskin, I.G., K. Mursula, S.K. Solanki, M. Schüssler, and G. Kovaltsov, A physical reconstruction of cosmic ray intensity since 1610, J. Geophys. Res., 107 (11), 1374, DOI: 10.1029/2002JA009343, 2002.
  • [133]Usoskin, I.G., S.K. Solanki, and G.A. Kovaltsov, Grand minima and maxima of solar activity: new observational constraints, A&A, 471, 301–309, DOI: 10.1051/0004-6361:20077704, 2007. [NASA ADS]
  • [134]Valach, F., P. Hejda, and J. Bochníček, Geoeffectiveness of XRA events associated with RSP II and/or RSP IV estimated using the artificial neural network, Stud. Geophys. Geod., 51 (4), 551–562, DOI: 10.1007/s11200-007-0032-5, 2007.
  • [135]Valach, F., M. Revallo, J. Bochníček, and P. Hejda, Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model, Space Weather, 7, S04004, DOI: 10.1029/2008SW000421, 2009.
  • [136]Vasyliunas, V.M., The interrelationship of magnetospheric processes. Edited by B.M. McCormac, Earth’s Magnetospheric Processes, Dordrecht, Holland: D. Reidel Pub, 29–38, 1972.
  • [137]Vasyliunas, V.M., Reinterpreting the Burton-McPherron-Russell equation for predicting Dst, J. Geophys. Res., 111, A07S04, DOI: 10.1029/2005JA011440, 2006.
  • [138]Wang, C.B., J.K. Chao, and C.H. Lin, Influence of the solar wind dynamic pressure on the decay and injection of the ring current, J. Geophys. Res., 108 (9), 1341, DOI: 10.1029/2003JA009851, 2003.
  • [139]Wang, R., and J. Wang, Investigation of the cosmic ray ground level enhancements during solar cycle 23, Adv. Space Res., 38, 489–492, 2006.
  • [140]Wanliss, J.A., and K.M. Showalter, High-resolution global storm index: Dst versus SYM-H, J. Geophys. Res., 111, A02202, DOI: 10.1029/2005JA011034, 2006.
  • [141]Weigel, R.S., Solar wind density influence on geomagnetic storm intensity, J. Geophys. Res., 115, A09201, DOI: 10.1029/2009JA015062, 2010.
  • [142]Weimer, D.R., Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, DOI: 10.1029/2004JA010884, 2005.
  • [143]Weygand, J.M., and R.L. McPherron, Dependence of ring current asymmetry on storm phase, J. Geophys. Res., 111, A11221, DOI: 10.1029/2006JA011808, 2006.
  • [144]Wild, J.A., S.E. Milan, C.J. Owen, J.M. Bosqued, M. Lester, D.M. Wright, H. Frey, C.W. Carlson, A.N. Fazakerley, and H. Remè, The location of the open-closed magnetic field line boundary in the dawn sector auroral ionosphere, Ann. Geophys., 22, 3625–3639, SRef-ID: 1432-0576/ag/2004-22-3625, 2004.
  • [145]Zhang, X.X., C. Wang, T. Chen, Y.L. Wang, A. Tan, T.S. Wu, G.A. Germany, and W. Wang, Global patterns of Joule heating in the high-latitude ionosphere, J. Geophys. Res., 110, A12208, DOI: 10.1029/2005JA011222, 2005.
  • [146]Zurbuchen, T.H., and I.G. Richardson, In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections, Space Sci. Rev., 123, 31–43, DOI: 10.1007/s11214-006-9010-4, 2006. [NASA ADS]
  文献评价指标  
  下载次数:4次 浏览次数:25次