期刊论文详细信息
Journal of Space Weather and Space Climate
Ionosphere Waves Service (IWS) – a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project
Any Vassileva6  Arnold Sterenharz1  János Lichtenberger2  Péter Steinbach7  Tetyana Shtus5  Hanna Rothkaehl3  Olena Piankova4  Pencho Marinov6  Tetiana Skorokhod4  Andrii Kuzmych4  Valery Korepanov5  Andrey Girenko1  Denis Dudkin5  Klaus Brieß8  Dorota Przepiórka3  Ludmil Bankov6  Ivan Price9  François Crespon9  Georgii Lizunov4  Csaba Ferencz2 
[1] ECM Office,Joachim-Karnatz-Allee 21,10557Berlin,Germany;Eötvös Loránd University, Pázmány P.s. (1/A),1117Budapest,Hungary;Space Research Center PAS,Bartycka 18A,00-716Warshaw,Poland;Space Research Institute NASU-SSAU, 40 Acad. Glushkova Ave., building 4/1,03680Kyiv,Ukraine;Lviv Center of Institute of Space Research NASU-SSAU, 5-A Naukova str.,79601Lviv,Ukraine;Space Research and Technology Institute BAS, Georgi Bonchev Str. bl.1.,1113Sofia,Bulgaria;MTA-ELTE Research Group for Geology, Geophysics and Space Sci., Pázmány P.s. (1/A),1117Budapest,Hungary;TUBerlin, Institut für Luft- und Raumfahrt, Marchstraße 12-14,10587Berlin,Germany;NOVELTIS SAS,Rue de la Mercerie 12,1003Lausanne,France
关键词: services;    density;    signal processing;    wave;    ionosphere (general);   
Others  :  800620
DOI  :  doi:10.1051/swsc/2014013
 received in 2013-06-03, accepted in 2014-04-10,  发布年份 2014
PDF
【 摘 要 】

In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

【 授权许可】

   
© C. Ferencz et al., Published by EDP Sciences 2014

【 预 览 】
附件列表
Files Size Format View
20140707194959510.pdf 10286KB PDF download
Fig. 33. 44KB Image download
Fig. 32. 86KB Image download
Fig. 31. 54KB Image download
Fig. 30. 74KB Image download
Fig. 29. 65KB Image download
Fig. 28. 38KB Image download
Fig. 27. 63KB Image download
Fig. 26. 58KB Image download
Fig. 25. 75KB Image download
Fig. 24. 46KB Image download
Fig. 23. 71KB Image download
Fig. 22. 50KB Image download
Fig. 21. 51KB Image download
Fig. 20. 57KB Image download
Fig. 19. 60KB Image download
Fig. 18. 60KB Image download
Fig. 17. 81KB Image download
Fig. 16. 94KB Image download
Fig. 15. 84KB Image download
Fig. 14. 116KB Image download
Fig. 13. 93KB Image download
Fig. 12. 104KB Image download
Fig. 11. 96KB Image download
Fig. 10. 72KB Image download
Fig. 9. 94KB Image download
Fig. 8. 97KB Image download
Fig. 7. 117KB Image download
Fig. 6. 134KB Image download
Fig. 5. 78KB Image download
Fig. 4. 83KB Image download
Fig. 3. 72KB Image download
Fig. 2. 66KB Image download
Fig. 1. 85KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

Fig. 18.

Fig. 19.

Fig. 20.

Fig. 21.

Fig. 22.

Fig. 23.

Fig. 24.

Fig. 25.

Fig. 26.

Fig. 27.

Fig. 28.

Fig. 29.

Fig. 30.

Fig. 31.

Fig. 32.

Fig. 33.

【 参考文献 】
  • [1]Afraimovich, E.L., E.A. Kosogorov, L.A. Leonovich, K.S. Palamartchouk, N.P. Perevalova, and O.M. Pirog, Observation of large-scale traveling ionospheric disturbances of auroral origin by global GPS networks, Earth Planets Space, 52, 669–674, 2000.
  • [2]Afraimovich, E.L., E.A. Kosogorov, L.A. Leonovich, O.S. Lesyuta, and I.I. Ushakov, GPS detection of the instantaneous response of the global ionosphere to strong magnetic storms with sudden commencement, Ann. Geophys., 45 (1), 41–53, 2002.
  • [3]Afraimovich, E.L., I.K. Edemskiy, S.V. Voeykov, Yu.V. Yasyukevich, and I.V. Zhivetiev, The First GPS-TEC imaging of the space structure of MS wave packets excited by the solar terminator, Ann. Geophys., 27, 1521–1525, 2009.
  • [4]Artru, J., V. Ducic, H. Kanamori, P. Lognonne, and M. Murakami, Ionospheric detection of gravity waves induces by tsunamis, Geophys. J. Int., 160, 840–848, DOI: 10.1111/j.1365-246X.2005.02552.x, 2005.
  • [5]Balthazor, R.L., and R.J. Mofett, A study of atmospheric gravity waves and travelling ionospheric disturbances at equatorial latitudes, Ann. Geophys., 15, 1048–1056, 1997.
  • [6]Błęcki, J., M. Parrot, and R. Wronowski, ELF and VLF signatures of sprites registered onboard the low altitude satellite DEMETER, Ann. Geophys., 27, 2599–2605, 2009.
  • [7]Berthelier, J.-J., M. Godefroy, F. Leblanc, E. Seran, D. Peschard, P. Gilbert, and J. Artru, IAP, the thermal plasma analyzer on DEMETER, Planet. Space Sci., 54, 487–501, 2006.
  • [8]Budden, K.G., The propagation of radio waves: The theory of radio waves of low power in the ionosphere and magnetosphere, Cambridge University Press, Cambridge and New York, 1985.
  • [9]Cai, H.T., F. Yin, S.Y. Ma, and I.W. McCrea, Observations of AGW/TID propagation across the polar cap: a case study, Ann. Geophys., 29, 1355–1363, 2011.
  • [10]Calais, E., and J.S. Haase, Detection of ionospheric perturbations using a dense GPS array in Southern California, Geophys. Res. Lett., 30 (12), 1628, DOI: 10.1029/2003GL017708, 2003.
  • [11]Chum, J., F. Jiricek, O. Santolik, M. Parrot, G. Diendorfer, and J. Fiser, Assigning the causative lightning to the whistlers observed on satellites, Ann. Geophys., 24, 2921–2929, 2006.
  • [12]Collier, A. B., J. Lichtenberger, M. A. Clilverd, P. Steinbach, and C. J. Rodger, Source region for whistlers detected at Rothera, Antarctica, J. Geophys. Res., 116, A03219, DOI: 10.1029/2010JA016197, 2011.
  • [13]Crespon, F., Tomographie 2D et 3D de l’ionosphère par GPS: applications aux aléas géophysiques. Thesis, Institue de Physique du Globe de Paris, 2007.
  • [14]Crespon, F., E. Jeansou, J. Helbert, G. Moreaux, P. Lognonné, P.E. Godet, and R. Garcia, SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products, in Proceedings of 1st Colloquium Scientific and Fundamental Aspects of the Galileo Programme, Toulouse, France, October, 2007.
  • [15]Fedorenko, A.K., G.V. Lizunov, and H. Rothkaehl, Satellite observations of wavelike atmosphere perturbations caused by strong earthquakes, Geomag. Aeron., 45, 403–410, 2005.
  • [16]Ferencz, Cs., O.E. Ferencz, D. Hamar, and J. Lichtenberger, Whistler phenomena, short impulse propagation, Kluwer Academic Publishers, Dordrecht, 2001.
  • [17]Ferencz, O.E., Cs. Ferencz, P. Steinbach, J. Lichtenberger, D. Hamar, M. Parrot, F. Lefeuvre, and J.-J. Berthelier, The effect of subionospheric propagation on whistlers recorded by the DEMETER satellite – observation and modeling, Ann. Geophys., 25, 1103–1112, 2007.
  • [18]Ferencz, O.E., L. Bodnár, Cs. Ferencz, D. Hamar, J. Lichtenberger, P. Steinbach, V. Korepanov, G. Mikhaylova, Yu. Mikhaylov, and V. Kuznetsov, Ducted whistlers propagating in higher order guided mode and recorded on board of Compass-2 satellite by the advanced Signal Analyzer and Sampler SAS2, J. Geophys. Res., 114, A03213, DOI: 10.1029/2008JA013542, 2009.
  • [19]Ferencz, Cs., J. Lichtenberger, D. Hamar, O.E. Ferencz, P. Steinbach, B. Székely, M. Parrot, F. Lefeuvre, J.-J. Bertelier, and M.A. Clilverd, An unusual VLF signature structure recorded by the DEMETER satellite, J. Geophys. Res., 115, A02210, DOI: 10.1029/2009JA014636, 2010.
  • [20]Francis, S.H., Global propagation of atmospheric gravity waves: a review, J. Atmos. Terr. Phys., 37, 1011–1054, 1975.
  • [21]Golden, D.I., M. Spasojevic, and U.S. Inan, Determination of solar cycle variations of midlatitude ELF/VLF chorus and hiss via automated signal detection, J. Geophys. Res., 116, A03225, DOI: 10.1029/2010JA016193, 2011.
  • [22]Hayashi, H., N. Nishitani, T. Ogawa, Y. Otsuka, T. Tsugawa, K. Hosokawa, and A. Saito, Large-scale traveling ionospheric disturbance observed by superDARN Hokkaido HF radar and GPS networks on 15 December 2006, J. Geophys. Res., 115, A06309, DOI: 10.1029/2009JA014297, 2010.
  • [23]Helliwell, R.A., Whistlers and related ionospheric phenomena, Stanford University Press, Stanford, 1965.
  • [24]Hines, C.O., Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys. 38, 1441–1481, 1960
  • [25]Hines, C.O., The upper atmosphere in motion, in Geophysical Monograph, vol. 18, American Geophysical Union, Washington D.C, 1974.
  • [26]Hocke, K., and K. Schlegel, A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995, Ann. Geophys., 14, 917–940, 1996.
  • [27]Huang, N.E, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N-C. Yen, C.C. Tung, and H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London, 454, 903–995, DOI: 10.1098/rspa.1998.0193, 1998. [NASA ADS]
  • [28]Hughes, A.R.W., and W.K.M. Rice, A satellite study of low latitude electron and proton whistlers, J. Atmos. Sol. Terr. Phys., 59 (10), 1217–1222, 1997.
  • [29]Hughes, A.R.W., and W.K.M. Rice, The latitudinal dependence of whistler ‘ghost’ delay times, Adv. Space Res., 30, 2619–2624, 2002.
  • [30]Inan, U.S., D. Piddyachiy, W.B. Peter, J.A. Sauvaud, and M. Parrot, DEMETER satellite observations of lightning-induced electron precipitation, Geophys. Res. Lett., 34, L07103, DOI: 10.1029/2006GL029238, 2007.
  • [31]Kato, S., Developments of the Earth and planetary sciences, in Dynamics of the upper atmosphere, Center for Academic Publications, Japan/Tokyo, 1980.
  • [32]Lefeuvre, F., R. Marshall, J.L. Pincon, U.S. Inan, D. Lagoutte, M. Parrot, and J.-J. Berthelier, On remote sensing of transient luminous events’ parent lightning discharges by ELF/VLF wave measurements on boar a satellite, J. Geophys. Res., 114, A09303, DOI: 10.1029/2009JA014154, 2009.
  • [33]Lichtenberger, J., Cs. Ferencz, L. Bodnár, D. Hamar, and P. Steinbach, Automatic Whistler Detector and Analyzer system: Automatic Whistler Detector, J. Geophys. Res., 113, A12201, DOI: 10.1029/2008JA013467, 2008.
  • [34]Lichtenberger, J., Cs. Ferencz, D. Hamar, P. Steinbach, C.J. Rodger, M.A. Clilverd, and A.B. Collier, Automatic Whistler Detector and Analyzer system: Implementation of the analyzer algorithm, J. Geophys. Res., 115, A12214, DOI: 10.1029/2010JA015931, 2010.
  • [35]Lognonné, P., J. Artru, R. Garcia, F. Crespon, V. Ducic, E. Jeansou, O. Occhipinti, J. Helbert, G. Moreaux, and P.E. Godet, Ground based GPS imaging of ionospheric post-seismic signal, Planet. Space Sci., 54, 528–540, 2006.
  • [36]Makela, J. J., P. Lognonné, H. Hébert, T. Gehrels, L. Rolland, et al., Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011, Geophys. Res. Lett., 38, L00G02, DOI: 10.1029/2011GL047860, 2011.
  • [37]Makhlouf, U., E. Dewan, J.R. Isler, and T.F. Tuan, On the importance of the purely gravitationally induced density, pressure and temperature variations in gravity waves: Their application to airglow observations, J. Geophys. Res., 95, 4103–4111, 1990.
  • [38]Mannucci, A.J., B. Iijima, L. Sparks, X. Pi, B. Wilson, and U. Lindqwister, Assessment of global TEC mapping using a three-dimensional electron density model, J. Atmos. Terr. Phys., 61, 1227–1236, 1999.
  • [39]Meredith, N.P., R.B. Horne, M.A. Clilverd, D. Horsfall, R.M. Thorne, and R.R. Anderson, Origins of plasmaspheric hiss, J. Geophys. Res., 111, A09217, DOI: 10.1029/2006JA011707, 2006.
  • [40]Mayer, H.G., I. Harris, F.A. Herrero, N.W. Spencer, F. Varosi, and W.D. Pesnell, Thermospheric gravity waves: observations and interpretation using the transfer function model (TFM), Space Sci. Rev., 54, 297–375, 1990.
  • [41]Nemec, F., O. Santolik, M. Parrot, and C.J. Rodger, Relationship between median intensities of electromagnetic emissions in the VLF range and lightning activity, J. Geophys. Res., 115, A08315, DOI: 10.1029/2010JA015296, 2010.
  • [42]Nunn, D., A. Demekhov, V. Trakhtengerts, and M.J. Rycroft, VLF emission triggering by a highly anisotropic energetic electron plasma, Ann. Geophys., 21, 481–492, 2003.
  • [43]Oya, H., T. Takahashi, and S. Watanabe, Observation of low latitude ionosphere by the impedance probe on board the Hinotori satellite, J. Geomag. Geoelectr., 38, 111–123, 1986.
  • [44]Quanrong, C., Approximate Kalman filtering, in Series in approximations and decompositions, vol. 2, World Scientific, Singapore, 1993.
  • [45]Parrot, M., U.S. Inan, and N.G. Lehtinen, V-shaped VLF streaks recorded on DEMETER above powerful thunderstorms, J. Geophys. Res., 113, A10310, DOI: 10.1029/2008JA013336, 2008.
  • [46]Parrot, M., U.S. Inan, N.G. Lehtinen, and J.L. Pincon, Penetration of lightning MF signals to the upper ionosphere over VLF ground-based transmitters, J. Geophys. Res., 114, A12318, DOI: 10.1029/2010JA015296, 2009.
  • [47]Rato, R.T., M.D. Ortigueira, and A.G. Batista, On the HHT, its problems, and some solutions, Mechanical Systems and Signal Processing, 22, 1374–1394, 2008.
  • [48]Sardón, E., and N. Zarraoa, Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases? Radio Science, 32, 1899–1910, 1997.
  • [49]Skorokhod, T., and G. Lizunov, The localized acoustic gravity wave packets in the ionosphere, Geomag. Aeron., 52 (1), 88–93, 2012.
  • [50]Steinbach, P., Investigation of upper-atmospheric ionization processes using ground based and satellite VLF recordings. PhD Thesis, Eötvös University, Budapest (in Hungarian), 2006.
  • [51]Zhao, J., and D. Huang, Mirror extending and circular spline function for empirical mode decomposition method, Journal of Zhejiang University (Science), 2 (3), 247–252, 2001.
  文献评价指标  
  下载次数:65次 浏览次数:12次