期刊论文详细信息
Journal of Space Weather and Space Climate
The influence of space weather on ionospheric total electron content during the 23rd solar cycle
Eric Pottiaux1  Quentin Baire1  Pascale Defraigne1  Jean-Marie Chevalier1  Juliette Legrand1  Carine Bruyninx1  Ioanna Tsagouri2  Nicolas Bergeot1 
[1] Royal Observatory of Belgium,3 avenue Circulaire,1180 Brussels,Belgium;Institute for Space Applications and Remote Sensing, National Observatory of Athens,15236 Mount Penteli,Greece
关键词: storm;    climate;    modelling;    ionosphere (general);    total electron content;   
Others  :  800674
DOI  :  doi:10.1051/swsc/2013047
 received in 2013-03-06, accepted in 2013-07-03,  发布年份 2013
PDF
【 摘 要 】

This paper presents a new empirical model for predicting the daily mean ionospheric Total Electron Content (TEC) at a given latitude from only one solar index as input. For the development of the model we take advantage of the availability of 15 years of global GNSS-based TEC information and solar indices (Sunspot Number, F10.7 and derived F10.7P) including the 23rd solar cycle. Among all the tests, our preferred ionospheric climatological model to predict daily mean TEC presents yearly median differences with observed values of 1.4 ± 0.9 TECu (11.5 ± 2.9% for the relative differences) with no significant degradation during the different phases of the solar cycle. To realize this empirical model we used a least-square adjustment with (1) a combination of linear, annual and semi-annual terms between the TEC and F10.7P; (2) a discretization with respect to the phases of the solar cycle. The main differences between the modelled and the observed TEC occur during identified geomagnetic storms: the maximum differences (−3.2 ± 1.5 TECu) and relative differences (−19.6 ± 15.0%) occur one day after the storm onset. The typical time to retrieve the pre-storm conditions is 3–4 days after the onset. These results show a global picture of the effect of extreme Space Weather events on the Earth’s upper atmosphere.

【 授权许可】

   
© N. Bergeot et al., Published by EDP Sciences 2013

【 预 览 】
附件列表
Files Size Format View
20140707202032856.pdf 3451KB PDF download
Fig. 14. 80KB Image download
Fig. 13. 43KB Image download
Fig. 12. 81KB Image download
Fig. 11. 72KB Image download
Fig. 10. 52KB Image download
Fig. 9. 88KB Image download
Fig. 8. 82KB Image download
Fig. 7. 66KB Image download
Fig. 6. 57KB Image download
Fig. 5. 66KB Image download
Fig. 4. 50KB Image download
Fig. 3. 48KB Image download
Fig. 2. 87KB Image download
Fig. 1. 81KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

【 参考文献 】
  • [1]Abdu, M.A., I.S. Batista, A.J. Carrasco, and C.G.M. Brum, South Atlantic magnetic anomaly ionization: a review and a new focus on electrodynamic effects in the equatorial ionosphere, J. Atmos. Sol. Terr. Phys., 67 (17–18), 1643–1657, DOI: 10.1016/j.jastp. 2005.01.014, 2005.
  • [2]Afraimovich, E.L., E.I. Astafyeva, A.V. Oinats, Y.V. Yasukevich, and I.V. Zhivetiev, Global electron content: a new conception to track solar activity, Ann. Geophys., 26, 335–344, 2008.
  • [3]Belehaki, A., G. Moraitis, and I. Tsagouri, On the derivation of an hourly local index to define the normal ionosphere, Ann. Geophys., 43 (1), 189–230, DOI: 10.4401/ag-3629, 2000.
  • [4]Bhuyan, P.K., and R.R. Borah, TEC derived from GPS network in India and comparison with the IRI, Adv. Space Res., 39 (5), 830–840, 2007.
  • [5]Bilitza, D., International Reference Ionosphere 2000, Radio Sci., 36 (2), 261–275, DOI: 10.1029/2000RS002432, 2001.
  • [6]Bilitza, D., B.W. Reinisch, S.M. Radicella, S. Pulinets, T. Gulyaeva, and L. Triskova, Improvements of the International Reference Ionosphere model for the topside electron density profile, Radio Sci., 41 (5), RS5S15, DOI: 10.1029/2005RS003370, 2006.
  • [7]Bilitza, D., L.-A. McKinnell, B. Reinisch, and T. Fuller-Rowell, The International Reference Ionosphere (IRI) today and in the future, J. Geod., 85 (12), 909–920, DOI: 10.1007/s00190-010-0427-x, 2011.
  • [8]Clette, F., D. Berghmans, P. Vanlommel, R. Van der Linden, A. Koeckelenbergh, and L. Wauters, From the Wolf number to the International Sunspot Index: 25 years of SIDC, Adv. Space Res., 40 (7), 919–928, ISSN: 0273-1177, DOI: 10.1016/j.asr.2006.12.045, 2007. [NASA ADS]
  • [9]Covington, A.E., Solar Radio Emission at 10.7 cm, 1947–1968, J. R. Astron. Soc. Can., 63, 125–132, 1969.
  • [10]Finlay, C.C., S. Maus, C.D. Beggan, T.N. Bondar, and A. Chambodut, et al., International geomagnetic reference field: the eleventh generation, Geophys. J. Int., 183 (3), 1216–1230, DOI: 10.1111/j.1365-246X.2010.04804.x, 2010. [NASA ADS]
  • [11]Fuller-Rowell, T.J., M.V. Codrescu, R.J. Moffett, and S. Quegan, Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99 (A3), 3893–3914, ISSN: 0148-0227, DOI: 10.1029/93JA02015, 1994.
  • [12]Iwamoto, I., H. Katoh, T. Maruyama, H. Minakoshi, S. Watari, and K. Igarashi, Latitudinal variations of solar flux dependence in the topside plasma density: comparison between IRI model and observations, Adv. Space Res., 29 (6), 877–882, ISSN: 0273-1177, DOI: 10.1016/S0273-1177(02)00054-6, 2002.
  • [13]Jakowski, N., M.M. Hoque, and C. Mayer, A new global TEC model for estimating transionospheric radio wave propagation errors, J. Geod., 85 (12), 965–974, ISSN: 0949-7714, DOI: 10.1007/s00190-011-0455-1, 2011.
  • [14]Kenpankho, P., K. Watthanasangmechai, P. Supnithi, T. Tsugawa, and T. Maruyama, Comparison of GPS TEC measurements with IRI TEC prediction at the equatorial latitude station, Chumphon, Thailand, Earth Planets Space, 63 (4), 365–370, 2011.
  • [15]Klobuchar, J., Ionospheric time-delay algorithms for single-frequency GPS users, IEEE Trans. Aerosp. Electron. Syst., 23 (3), 325–331, 1987.
  • [16]Liu, L., W. Wan, B. Ning, O.M. Pirog, and V.I. Kurkin, Solar activity variations of the ionospheric peak electron density, J. Geophys. Res., 111 (8), A08304, DOI: 10.1029/2006JA011598, 2006.
  • [17]Liu, L., and Y. Chen, Statistical analysis of solar activity variations of total electron content derived at Jet Propulsion Laboratory from GPS observations, J. Geophys. Res., 114, A10311, DOI: 10.1029/2009JA014533, 2009.
  • [18]Liu, L., W. Wan, B. Ning, and M.-L. Zhang, Climatology of the mean total electron content derived from GPS global ionospheric maps, J. Geophys. Res., 114, A06308, DOI: 10.1029/2009JA014244, 2009. [NASA ADS]
  • [19]Ma, R., J. Xu, W. Wang, and W. Yuan, Seasonal and latitudinal differences of the saturation effect between ionospheric NmF2 and solar activity indices, J. Geophys. Res., 114, A10303, DOI: 10.1029/2009JA014353, 2009.
  • [20]Mendillo, M., Storms in the ionosphere: patterns and processes for total electron content, Rev. Geophys., 44, RG4001, DOI: 10.1029/2005RG000193, 2006.
  • [21]Mikhailov, A.V., and V.V. Mikhailov, Solar cycle variations of annual mean noon foF2, Adv. Space Res., 15 (2), 79–82, 1995a.
  • [22]Mikhailov, A.V., and V.V. Mikhailov, A new ionospheric index MF2, Adv. Space Res., 15 (2), 93–97, 1995b.
  • [23]Orús, R., M. Hernández-Pajares, J.M. Juan, J. Sanz, and M. Garcı́a-Fernández, Performance of different TEC models to provide GPS ionospheric corrections, J. Atmos. Sol. Terr. Phys., 64 (18), 2055–2062, ISSN: 1364-6826, DOI: 10.1016/S1364-6826(02)00224-9, 2002.
  • [24]Prolss, G.W., On explaining the local time variation of ionospheric storm effects, Ann. Geophys., 11, 1–9, 1993.
  • [25]Rishbeth, H., How the thermospheric circulation affects the ionospheric F2-layer, J. Atmos. Sol. Terr. Phys., 60 (14), 1385–1402, ISSN: 1364-6826, DOI: 10.1016/S1364-6826(98)00062-5, 1998.
  • [26]Schaer, S., W. Gurtner, and J. Feltens, IONEX: The IONosphere Map EXchange Format Version 1. Proceedings of the 1988 IGS Analysis Centers Workshop, ESOC, Darmstadt, Germany, February 9–11, pp. 233–247, 1998.
  • [27]Secan, J.-A., and P.J. Wilkinson, Statistical studies of an effective sunspot number, Radio Sci., 32, 1717–1724, DOI: 10.1029/97RS01350, 1997.
  • [28]Tsagouri, I., A. Belehaki, G. Moraitis, and H. Mavromichalaki, Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms, Geophys. Res. Lett., 27 (21), 3579–3582, ISSN: 0094-8276, DOI: 10.1029/2000GL003743, 2000.
  • [29]Tsagouri, I., and A. Belehaki, An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response, J. Atmos. Sol. Terr. Phys., 70 (16), 2061–2076, ISSN: 1364-6826, DOI: 10.1016/j.jastp. 2008.09.010, 2008.
  • [30]Tsagouri, I., K. Koutroumbas, and A. Belehaki, Ionospheric foF2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters, Radio Sci., 44, RS0A35, DOI: 10.1029/2008RS004112, 2009.
  • [31]Vanlommel, P., P. Cugnon, R. Van Der Linden, D. Berghmans, and F. Clette, The SIDC: World Data Center for the Sunspot Index, Solar Physics, 2004-10-01, Springer Netherlands, 0038-0938, Phys. Astron., 224 (1), 113–120, DOI: 10.1007/s11207-005-6504-2, 2005.
  • [32]Zhang, S.-R., J.M. Holt, A.P. van Eyken, M. McCready, C. Amory-Mazaudier, S. Fukao, and M. Sulzer, Ionospheric local model and climatology from long-term databases of multiple incoherent scatter radars, Geophys. Res. Lett., 32, L20102, DOI: 10.1029/2005GL023603, 2005.
  文献评价指标  
  下载次数:256次 浏览次数:17次