期刊论文详细信息
Advances in Artificial Neural Systems
Design of Adaptive Filter Using Jordan/Elman Neural Network in a Typical EMG Signal Noise Removal
Research Article
A. A. Ghatol1  V. R. Mankar2 
[1] Technological University, Lonere, Dist. Raigarh, (M.S.), India;Electronics Department, Government Polytechnic, Amravati, (M.S.) 444 604, India
Others  :  1374430
DOI  :  10.1155/2009/942697
 received in 2008-07-28, accepted in 2009-02-03,  发布年份 2009
PDF
【 摘 要 】

The bioelectric potentials associated with muscle activity constitute the electromyogram (EMG). These EMG signals are low-frequency and lower-magnitude signals. In this paper, it is presented that Jordan/Elman neural network can be effectively used for EMG signal noise removal, which is a typical nonlinear multivariable regression problem, as compared with other types of neural networks. Different neural network (NN) models with varying parameters were considered for the design of adaptive neural-network-based filter which is a typical SISO system. The performance parameters, that is, MSE, correlation coefficient, N/P, and t, are found to be in the expected range of values.

【 授权许可】

CC BY   
Copyright © 2009 2009

【 预 览 】
附件列表
Files Size Format View
942697.pdf 861KB PDF download
【 参考文献 】
  • [1]J. D. Bronzino. (1995). The Biomedical Engineering Handbook. DOI: 10.1109/72.548174.
  • [2]L. C. Brush. (1995). The Guide to Biomedical Standards. DOI: 10.1109/72.548174.
  • [3]B. J. Cohen. (1995). Medical Terminology: An Illustrated Guide. DOI: 10.1109/72.548174.
  • [4]L. Cromwell, F. J. Wiebell, E. A. Pfeiffer. (1980). Biomedical Instrumentation and Measurements. DOI: 10.1109/72.548174.
  • [5]J. G. Webster. (2001). Medical Instrumentation: Application and Design. DOI: 10.1109/72.548174.
  • [6]W. J. Tompkins. (1999). Biomedical Digital Signal Processing. DOI: 10.1109/72.548174.
  • [7]L. Cromwell, F. J. Wiebell, E. A. Pfeiffer. (2004). Biomedical Instrumentation and Measurements. DOI: 10.1109/72.548174.
  • [8]E. C. Eugène. Discriminating Noisy Sentences with Partially Recurrent Neural Networks. . DOI: 10.1109/72.548174.
  • [9]D. Wang. (2003). Temporal pattern processing. The Handbook of Brain Theory and Neural Networks:1163-1167. DOI: 10.1109/72.548174.
  • [10]D. L. Wang, B. Yuwono. (1996). Incremental learning of complex temporal patterns. IEEE Transactions on Neural Networks.7(6):1465-1481. DOI: 10.1109/72.548174.
  • [11]Q. Xue, Y. H. Hu, W. J. Tompkins. (1992). Neural-network-based adaptive matched filtering for QRS detection. IEEE Transactions on Biomedical Engineering.39(4):317-329. DOI: 10.1109/72.548174.
  • [12]R. D. de Veaux, J. Schumi, J. Schweinsberg, L. H. Ungar. et al.(1998). Prediction intervals for neural networks via nonlinear regression. Technometrics.40(4):273-282. DOI: 10.1109/72.548174.
  • [13]J. C. Principe, N. R. Euliano, W. C. Lefebvre. (2000). Neural and Adaptive Systems. DOI: 10.1109/72.548174.
  • [14]S. Haykin. (1986). Adaptive Filter Theory. DOI: 10.1109/72.548174.
  • [15]B. Widrow, J. R. Glover, J. M. McCool. (1975). Adaptive noise cancelling: principles and applications. Proceedings of the IEEE.63(12):1692-1716. DOI: 10.1109/72.548174.
  • [16]R. S. Khandpur. (2001). Handbook of Biomedical Instrumentation. DOI: 10.1109/72.548174.
  • [17]A. Zeghbib, F. Palis, N. Shoylev, V. Mladenov. et al.Sampling frequency and pass-band frequency effects on neuromuscular signals (EMG) recognition. :107-114. DOI: 10.1109/72.548174.
  • [18]U. Gündoğdu, A. Sayin, A. Akan, Y. Arslan. et al.Investigation of muscle fatigue using temporal and spectral moments. :10-14. DOI: 10.1109/72.548174.
  • [19]M. Cabrerizo, M. Adjouadi, M. Ayala, I. Yaylali. et al.EEG analysis using neural networks for seizure detection. :121-126. DOI: 10.1109/72.548174.
  • [20]D. Coufal. Classification of EEG signals by radial neuro-fuzzy system. :224-232. DOI: 10.1109/72.548174.
  • [21]M. S. Chavan, R. Agarwala, M. D. Uplane. Use of Kaiser window for ECG processing. :285-289. DOI: 10.1109/72.548174.
  • [22]H. Husain, L. L. Fatt. Effecient ECG signal classification using sparsely connected radial basis function neural network. :412-416. DOI: 10.1109/72.548174.
  • [23]M. Arezki, A. Benallal, P. Meyrueis, A. Guessoum. et al.Analysis of fast recursive least squares algorithms for adaptive filtering. .2:473-480. DOI: 10.1109/72.548174.
  • [24]C. Li, K.-H. Cheng. Adaptive noise cancellation with computational-intelligence-based approach. :93-98. DOI: 10.1109/72.548174.
  • [25]E. A. Clancy, N. Hogan. (1995). Multiple site electromyograph amplitude estimation. IEEE Transactions on Biomedical Engineering.42(2):203-211. DOI: 10.1109/72.548174.
  • [26]Y. St-Amant, D. Rancourt, E. A. Clancy. (1998). Influence of smoothing window length on electromyogram amplitude estimates. IEEE Transactions on Biomedical Engineering.45(6):795-800. DOI: 10.1109/72.548174.
  • [27]L. Wang, T. S. Buchanan. (2002). Prediction of joint moments using a neural network model of muscle activations from EMG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering.10(1):30-37. DOI: 10.1109/72.548174.
  • [28]A. Hamilton-Wright, D. W. Stashuk. (2005). Physiologically based simulation of clinical EMG signals. IEEE Transactions on Biomedical Engineering.52(2):171-183. DOI: 10.1109/72.548174.
  • [29]Z. Zhang, Z. Tang, C. Vairappan. (2007). A novel learning method for Elman neural network using local search. Neural Information Processing—Letters and Reviews.11(8):181-188. DOI: 10.1109/72.548174.
  文献评价指标  
  下载次数:3214次 浏览次数:12561次