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The bioelectric potentials associated with muscle activity constitute the electromyogram (EMG). These EMG signals are low-
frequency and lower-magnitude signals. In this paper, it is presented that Jordan/Elman neural network can be effectively used for
EMG signal noise removal, which is a typical nonlinear multivariable regression problem, as compared with other types of neural
networks. Different neural network (NN) models with varying parameters were considered for the design of adaptive neural-
network-based filter which is a typical SISO system. The performance parameters, that is, MSE, correlation coefficient, N/P, and t,
are found to be in the expected range of values.
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1. Introduction

The bioelectric signals associated with muscle fibers consti-
tute the electromyogram (EMG). The contraction of skeletal
muscle results in the generation of action potentials in the
individual muscle fibers, a record of which is known as
EMG. The activity is similar to that observed in cardiac
muscle, but in skeletal muscle, repolarization takes place
much more rapidly; the action potential lasting only a few
milliseconds. The electrical activity of the underlying muscle
mass can be observed by means of surface electrodes on the
skin. However, it is usually preferred to record the action
potentials from individual motor units for better diagnostic
information [1, 2].

In voluntary contraction of skeletal muscle, the muscle
potentials range from 25 μV to 5 mV, the duration ranges
from 2 to 15 milliseconds, and primary signal frequency
ranges from 5 to 2000 Hz. The values vary with the anatomic
position of the muscle and the size and location of the
electrode. In a relaxed muscle, there are normally no action
potentials [3, 4]. Electromyograph is an instrument used for
recording the electrical activity of the muscles to determine
whether the muscle is contracting or not, displaying on the

CRO and loudspeaker the action potentials spontaneously
present in a muscle or induced by voluntary contractions
as a means of detecting the nature and location of motor
unit lesions, or recording the electrical activity evoked in
a muscle by stimulation of its nerve. The instrument is
useful for making a study of several aspects of neuromuscular
function, neuromuscular condition, extent of nerve lesion,
reflex responses, and so forth [5, 6].

Signal enhancement in noisy environment is a challenge
problem for decades. Noise is added to a signal under
measurement almost in an uncontrolled manner. Signal
processing systems pick up “unwanted” noise signal along
with desired signal. These noise signals result in perfor-
mance degradation of those systems. Noise classification
can be used to reduce the effect of environmental noises
on signal processing tasks. Neural networks are proposed
as alternative optimization techniques to handle problems
in signal processing. Prior a neural network (NN) maps
each input feature vector into output vector, it must have
first learnt the classes of feature vectors through a process
that partitions the set of feature vectors. This is called
discrimination (or classification), which involves machines
learning [7, 8].
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2. Temporal Signal Processing

Temporal signal processing is important for various intel-
ligent behaviors, including hearing, vision, speech, music,
and motor control. Because there is an ever-changing
environment around, an intelligent system, whether it be a
human or a robot, must encode patterns over time and must
recognize and generate temporal patterns. Time is embodied
in a temporal pattern in two different ways.

(i) Temporal order. It refers to the ordering among
the components of a sequence. For example, the
sequence S-U-B is different from B-U-S. Temporal
order may also refer to a syntactic structure, such as
subject-verb-object, where each component may be
any category of possible symbols.

(ii) Time duration. Duration can play a critical role for
temporal processing.

Temporal pattern processing is a challenging topic
because the information is embedded in time (i.e., inher-
ently dynamic), not simultaneously available. Fundamentally
different from static pattern processing, temporal processing
requires that a neural network should have a capacity
of short-term memory (STM) in order to maintain a
component for some time. This is because a temporal pattern
extends over a time period. Thus, how to encode STM
becomes one of the criteria for classifying NNs for temporal
processing [9].

The shared goal of all STM models is to make input
history available simultaneously when recognition takes
place. With an STM model in place, recognition is not
much different from the recognition of static patterns. The
architecture for this type of recognition is simply a two-
layer network: the input layer that incorporates STM and
the sequence recognition layer where each unit encodes an
individual sequence. The recognition scheme is essentially
template matching, where templates are formed through the
following Hebbian learning:

Wij(t) =Wij(t − 1) + Csi(t)[x j(t)−Wij(t − 1)], (1)

where Wij is the connection weight from unit x j in the
input layer to sequence recognizer si in the recognition
layer. Parameter C controls learning rate. Hebbian learning
is applied after the presentation of the entire sequence is
completed. Thus, the templates formed can be used to
recognize specific input sequences. The recognition layer
typically includes recurrent connections for selecting a
winner by self-organization during training [10].

3. Neural Network Approach

There are numerous real life situations where the exactness
of the measurements is required. In biomedical applications,
due to complicated situations, the measurements are noisy.
NNs can be used to obtain reasonably good accuracy in
removal of noise or elegantly filtering out the desired signals.
At a high level, the filtering problem is a special class
of function approximation problem in which the function

values are represented using time series. A time series is a
sequence of values measured over time in the discrete or
continuous time units. Literature survey revealed that the
NNs can also be effectively used for solving the nonlinear
multivariable regression problem [11, 12]. Also, there is a
wide scope for an exact NN with the performance indices
approaching to their ideal values, that is, MSE = 0, and
correlation coefficient r = 1 [13].

Signal filtering from present observations is a basic signal
processing operation by the use of filters. Conventional
parametric approaches to this problem involve mathematical
modeling of the signal characteristics, which is then used
to accomplish the filtering. In a general case, this is
relatively a complex task containing many steps for instance
model hypothesis, identification and estimation of model
parameters and their verification. However, using an NN,
the modeling phase can be bypassed, and nonlinear and
nonparametric signal filtering can be performed. As the
thresholds of all neurons are set to zeros, unknown variables
for one step ahead filtering are only the connection weights
between the output neurons and the jth neuron in the second
layer, which can be trained by available sample set [14, 15].

In the last decade, NNs have given rise to high expec-
tations for model-free statistical estimation from a finite
number of samples. The goal of predictive learning is to
estimate or learn an unknown functional mapping between
the input variables and the output variables, from the
training set of known input output samples. The mapping
is typically implemented as a computational procedure in
software. Once the mapping is obtained from the training
data, it can be used for predicting the output value, given
only the values of the input variables [16]. In the research
work referred, the several techniques for noise removal
from biomedical signals like EMG [17, 18], EEG [19, 20],
and ECG [21, 22] using signal processing techniques [23,
24] and NNs have been presented. Temporal whitening
of individual surface EMG and spatial combination of
multiple recording sites have separately been demonstrated
to improve the performance of EMG amplitude estimation
[25]. A systematic experimental study of the influence of
smoothing window length on the signal-to-noise ratio of
EMG amplitude estimates is described [26]. Because the
relationship between EMG signals and muscle activations
remains unpredictable, a new way to determine muscle
activations from EMG signals by using a feedforward neural
network using four layers is proposed [27]. An algorithm that
generates EMG signals consistent with those acquired in a
clinical setting is described [28].

3.1. Recurrent Networks. Recurrent networks are the proper
NN to be selected when identifying a nonlinear dynamical
process. Such networks are attractive with their capabilities
to perform highly nonlinear dynamic mapping and their
ability to store information for later use. Moreover, they
can deal with time-varying input or output through their
own natural temporal operation. There are two types of
recurrent neural networks: fully recurrent neural networks
and partially recurrent neural networks. Many learning algo-
rithms have been developed. Partially recurrent networks
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are back-propagation networks with proper feedback links.
It allows the network to remember cues from the recent
past. In these architectures, the nodes receiving feedback
signals are context units. According to the kind of feedback
links, two major models of partially recurrent networks are
encountered as described below.

3.2. Jordan Network. Jordan network model is realized by
adding recurrent links from the network’s output to a set of
context units Ci of a context layer and from the context units
to themselves. Context units copy the activations of output
node from the previous time step through the feedback links
with unit weights. Their activations are governed by the
differential equation

C′i (t) = −αCi(t) + yi(t), (2)

where the yi’s are the activations of the output nodes, and α
is the strength of the self-connections.

Despite the use of the Jordan sequential network to
recognize and distinguish different input sequences with
sequences of increasing length, this model of network
encounters difficulties in discriminating on the basis of the
first cues presented.

3.3. Multilayer Perceptron Approach. Jordan described the
first MLP architecture with recurrent connections for
sequence generation. The input layer has two parts: plan
units representing external input and the identity of the
sequence, and state units that receive one-to-one projections
from the output layer, forming decay trace STM. After a
sequence is stored into the network by back propagation
training, it can be generated by an external input represent-
ing the identity of the sequence. This input activates the
first component of the sequence in the output layer. This
component feeds back to the input layer and, together with
the external input, activates the second component, and so
on. A particular component of a sequence is generated by
the part of the sequence prior to the component; earlier
components have lesser roles due to exponential decay.
Elman later modified Jordan’s architecture by having the
hidden layer connect to a part of the input layer, called
the context layer. The context layer simply duplicates the
activation of the hidden layer in the previous time step.
Elman used this architecture to learn a set of individual
sequences satisfying a syntactic description and found that
the network exhibits a kind of syntax recognition. This result
suggests a way of learning high-level structures, such as
natural language grammar.

3.4. Elman Neural Network. Elman neural network (ENN)
is a type of partial recurrent neural network, which consists
of two-layer back propagation networks with an additional
feedback connection from the output of the hidden layer to
its input layer. The advantage of this feedback path is that it
allows ENN to recognize and generate temporal patterns and
spatial patterns. This means that after training, interrelations
between the current input and internal states are processed
to produce the output and to represent the relevant past

information in the internal states. As a result, the ENN has
been widely used in various fields from a temporal version
of the exclusive-OR function to the discovery of syntactic
or semantic categories in natural language data. However,
since ENN often uses back propagation (BP) to deal with
the various signals, it has proved to be suffering from a
suboptimal solution problem. At the same time, for the ENN,
it is less able to find the most appropriate weights for hidden
neurons and often get into the suboptimal areas because the
error gradient is approximated.

In the ENN, after the hidden units are calculated, their
values are used to compute the output of the network and
all are also stored as “extra inputs” (called context unit) to
be used when the network is operated next time. Thus, the
recurrent contexts provide a weighted sum of the previous
values of the hidden units as input to the hidden units. The
activations are copied from hidden layer to context layer on
a one-to-one basis, with fixed weight of 1 (w = 1). The
forward connection weight is trained between hidden units
and context units as well as other weights [29]. Both of the
Jordan and Elman networks have fixed feedback parameters,
and there is no recurrence in the input-output path. These
networks can be trained approximately with straight back
propagation. Elman’s context layer receives input from the
hidden layer, while Jordan’s context layer receives input from
the output as shown in Figure 1.

A typical nonlinear regression problem of removing
noise from an EMG signal has been considered in this paper
using a Jordan/Elman NN. Jordan and Elman networks
extend the multilayer perceptron with context units, which
are processing elements (PEs) that remember past activity.
Context units provide the network with the ability to extract
temporal information from the data. In the Elman network,
the activity of the first hidden PEs is copied to the context
units, while the Jordan network copies the output of the
network. Networks which feed the input and the last hidden
layer to the context units are also available. The training data
is used to train a Jordan/Elman NN to remove the noise
in the EMG signal. This contains 890 data samples in two
variables.

4. Performance Measures

4.1. Mean Square Error (MSE). The formula for the mean
square error is

MSE =
∑p

j=0

∑n
i=0

(
di j − yi j

)2

NP
, (3)

where P = number of output processing elements, N =
number of exemplars in the data set, yi j = network output
for exemplar i at processing element j, and di j = desired
output for exemplar i at processing element j.

Learning of an NN is a stochastic process that depends
not only on the learning parameters but also on the initial
conditions. Thus, if it is required to compare network
convergence time or final value of the MSE after a number of
iterations, it is necessary to run each network several times
with random initial conditions and pick the best.
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Figure 1: Jordan and Elman network.

4.2. Correlation Coefficient (r). The size of the mean square
error (MSE) can be used to determine how well the network
output fits the desired output, but it doesn’t necessarily
reflect whether the two sets of data move in the same
direction. For instance, by simply scaling the network
output, the MSE can be changed without changing the
directionality of the data. The correlation coefficient (r)
solves this problem. By definition, the correlation coeffi-
cient between a network output x and a desired output
d is

r =
∑

i

(
x1 − x

)(
di − d

)
/N

√∑
i

(
di − d

)2
/N
√∑

i

(
x1 − x

)2
/N

. (4)

The numerator is the covariance of the two variables,
and the denominator is the product of the corresponding
standard deviation, and N is the number of exemplars. The
correlation coefficient is confined to the range [−1, 1]. When
r = 1, there is a perfect positive linear correlation between
x and d, that is, they covary, which means that they vary by
the same amount. When r = −1, there is a perfectly linear
negative correlation between x and d, that is, they vary in
opposite ways. When r = 0, there is no correlation between
x and d, that is, the variables are uncorrelated. Intermediate
values reveal partial correlations (e.g., r = 0.9) which state
that the fit of the linear model to the data is reasonably good
[13].

Correlation coefficient (r) tells how much of the variance
of d is captured by a linear regression on the independent
variable x, and hence, r is a very effective quantifier of the
modeling result. It has the greatest advantage with respect
to the MSE as it is automatically normalized, while the
MSE is not. But r is blind to the differences in means as
it is a ratio of variances, that is, as long as the desired
data and input covary, r will be small, in spite of the fact
that they may be far apart in actual value. Hence, both
parameters (r and MSE) are required when testing the results
of regression.

4.3. The N/P Ratio. The N/P ratio describes the complexity
of an NN and is given by

N/P = Total Training Samples
Number of connection weights

. (5)

4.4. Time Elapsed Per Epoch Per Exemplar (t). Time elapsed
per epoch per exemplar (t) helps to calculate the speed of a
network and is given by

t = Time elapsed for n samples
(n samples × total training samples)

. (6)

5. Database Descriptions

The noisy EMG input signal under consideration has 890
samples. Out of total 890 samples, 450 samples constitute
the training set, 180 samples are used for cross-validation
(CV), and 210 samples are chosen for testing set. The
training set is used to train the NN. During the learning,
the weights and biases are updated dynamically using the
back propagation algorithm. The validation set is used to
determine the performance of the NN on patterns that are
not trained during learning. Its major goal is to avoid the
over training during the learning phase. The testing set
is used to check the overall performance of the network.
The input PE and output PE were chosen to be one, as
it is a single input (i.e., noisy EMG input) and a single
output (i.e., desired or filtered EMG output), SISO system.
The NN defined has the other parameters like context unit
(time) = 0.8 microsecond, transfer function = TanhAxon,
and learning rule = momentum. Termination criterion for
experimentation is minimum MSE in both training and
cross-validation stages with maximum epochs = 1000, and
learning rate is fixed to 0.01.

6. Simulation

The results are obtained on neuro solutions platform and
accordingly, simulations are carried out on noisy EMG input
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Table 1: For hidden layers = 2, input PE = 1, output PE = 1, transfer function = TanhAxon, learning rule = momentum, maximum epochs =
1000, and threshold MSE = 0.01.

Serial no. Type of ANN
Hidden layer
variation H1 H2

Correlation
coefficient (r)

MSE
N/P t (μ sec)

Training Cross validation Testing

01 Jordan/Elman
network

09,06 0.782 021 085 0.009 907 153 0.017 699 749 0.013 501 987 7.5 11.3

02 Jordan/Elman
network

07,05 0.775 341 114 0.009 949 377 0.018 167 161 0.013 811 668 7.5 10.8

03 Jordan/Elman
network

08,05 0.777 408 297 0.00 996 472 0.017 879 274 0.013 631 649 10 32.6

Table 2: For hidden layers = 3, input PE = 1, output PE = 1, transfer function = TanhAxon, learning rule = momentum, maximum epochs =
1000, and threshold MSE = 0.01.

Serial no. Type of ANN
Hidden layer
variation H1 H2 H3

Correlation
coefficient (r)

MSE
N/P t (μs)

Training Cross validation Testing

01 Jordan/Elman
network

08,04,02 0.781 188 725 0.009 985 315 0.020 162 012 0.014 843 202 9.7826 6.4

02 Jordan/Elman
network

08,04,02 0.805 945 071 0.009 983 631 0.021 040 779 0.015 119 372 9.7826 6.5

03 Jordan/Elman
network

08,05,04 0.753 974 779 0.009 980 005 0.019 238 182 0.014 509 881 6.5217 23.8

04 Jordan/lman
network

08,05,04 0.793 330 832 0.009 983 942 0.02 0150 538 0.014 729 364 6.5217 18.8
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and desired EMG signal. The noisy EMG input was inputted
to a Jordan/Elman NN with a number of hidden layers
varying from 2 to 4. A Jordan/Elman NN with input, hidden,
and output layer with varying parameters like processing
elements, transfer function, learning rule, step size, and
momentum were tested with maximum epoch value 1000.

After training the Jordan/Elman NN on a noisy input
and desired output data values with 890 samples and under
different (training, cross-validation, and testing samples
swapped) conditions, the expected results were obtained
with minimum MSE and maximum correlation coefficient
around the estimated values as shown below. The EMG signal
under consideration, having a total 890 samples, was divided
into various tags, that is, 50% sample for training, 20% for
cross validation, and 30% for testing. The hidden layers were
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varied from 2 to 4 for experimentation. The other parameters
like processing element per hidden layer, transfer function,
and learning rule were also varied. The results for optimum
parameters for SISO system under consideration are given in
following tables.

Simulations Results and Discussion. The Jordan/Elman net-
work was designed with two hidden layers, and processing
elements per hidden layer were varied from minimum 1
to the maximum value as indicated in the table separately
for hidden layer 1 and then for hidden layer 2, and a few
sample results with optimal performance is as depicted in
Table 1 with other parameters as described below. In Table 1,
N denotes number of exemplars in the training data set,
and P denotes total number of connection weights (free
parameters) of the specific NN model. Time t denotes time
elapsed per epoch per exemplar or instances.

The Jordan/Elman NN was trained for five times and
the best performance with respect to MSE of training was
observed during the third run at the end of 1000 epochs.
Similarly, the best cross-validation performance was noticed
during the fourth run at the end of 1000 epochs. Following
graphs depict the results for simulation at serial number 1 in
Table 1, for r = 0.782 021 085.
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Figure 2 depicts the variation of average of minimum
MSE for 5 runs versus the number of PEs in the first hidden
layer. It is observed that for four processing elements in the
first hidden layer, the MSE on CV attained its minimum
value. When PEs are increased beyond 5, the MSE on CV was
seen to increase. Therefore, 5 PEs are chosen for first hidden
layer.

Figure 3 depicts the variation of average training MSE
versus the number of epochs. Five different runs with new
random initialization of connection weights of NNs are
shown below. It is observed that for each run (training cycle),
average MSE decreases as number of epochs increases. It is
worthwhile to notice that this trend of decrease in MSE is
consistent for all the five runs.

Figure 4 shows the variation of desired output and
actual NN output versus the number of exemplars. The
covariance between the desired output and actual NN output
is indicated by correlation coefficient, r = 0.782 021 085.

The Jordan/Elman network was designed with three
hidden layers, and processing elements per hidden layer were
varied from minimum 1 to the maximum value as indicated
in the table separately for hidden layer 1 and then for hidden
layer 2, and a few sample results with optimal performance
are depicted in Table 2 with other parameters as described
below.
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Table 3: For hidden layers = 4, input PE = 1, output PE = 1, transfer function = TanhAxon, learning rule = momentum, maximum epochs =
1000, and threshold MSE = 0.01.

Serial no. Type of ANN
Hidden layer variation
H1 H2 H3 H4

Correlation
coefficient (r)

MSE
N/P t (μs)

Training Cross validation Testing

01 Jordan/Elman
network

07,11,12,05 0.771 344 418 0.006 039 548 0.013 371 967 0.012 071 403 1.5151 25.6

02 Jordan/Elman
network

07,11,12,05 0.78 827 949 0.008 325 698 0.017 142 589 0.013 621 869 1.5151 23.2

03 Jordan/Elman
network

06,09,09,05 0.785 489 978 0.009 970 153 0.019 572 975 0.014 487 733 2.21 675 35.7

Table 4

Serial no. Type of ANN
Hidden layer
variation H1 H2 H3

Correlation coefficient (r)
MSE

Training Cross validation Testing

01 Jordan/Elman network 08,04,02 0.858 319 624 0.005 840 824 0.020 745 749 0.02 014 514
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The Jordan/Elman NN was trained for five times, and
the best performance with respect to MSE of training was
observed during the second run at the end of 1000 epochs.
Similarly, the best cross-validation performance was noticed
during the second run at the end of 1000 epochs. Following
graphs depict the results for simulation at serial number 2 in
Table 2, for r = 0.805 945 071.

Desired output and actual NN output

2892732572412252091931771611451291139781654933171

Number of exemplars

Desired O/P
Actual NN O/P

−0.2
−0.15
−0.1
−0.05

0
0.05

0.1
0.15

0.2

O
u

tp
u

t
(n

or
m

al
iz

ed
)

Figure 11

Figure 5 depicts the variation of average of minimum
MSE for 5 runs versus the number of PEs in the second
hidden layer. It is observed that for three processing elements
in the second hidden layer, the MSE on CV attained its
minimum value. When PEs are increased beyond 4, the MSE
on CV was seen to increase. Therefore, 4 PEs are chosen for
second hidden layer.

Figure 6 depicts the variation of average training MSE
versus the number of epochs. Five different runs with new
random initialization of connection weights of NNs are
shown below. It is observed that for each run (training cycle),
average MSE decreases as number of epochs increases. It is
worthwhile to notice that this trend of decrease in MSE is
consistent for all the five runs.

Figure 7 shows the variation of desired output and
actual NN output versus the number of exemplars. The
covariance between the desired output and actual NN output
is indicated by correlation coefficient, r = 0.805 945 071.

The Jordan/Elman network was designed with four
hidden layers, and processing elements per hidden layer were
varied from minimum 1 to the maximum value as indicated
in the table separately for hidden layer 1 and then for hidden
layer 2, and a few sample results with optimal performance
are depicted in Table 3 with other parameters as described
below.



8 Advances in Artificial Neural Systems

Table 5

Serial no. Type of ANN
Hidden layer
variation H1 H2 H3

Correlation coefficient (r) MSE
N/P t (μs)

Training Cross validation Testing

01 MLP 08,04,02 0.726 960 433 0.011 620 758 0.019 586 198 0.014 066 105 9.7826 6.1

02 Gen FF 08,04,02 0.738 815 896 0.011 513 017 0.018 595 822 0.01 154 671 9.7826 185.1

03 Mod NN 08,04,02 0.734 250 027 0.012 326 123 0.023 655 146 0.016 096 204 9.7826 37.9

04 RBF 08,04,02 0.710 938 982 0.011 711 991 0.020 447 456 0.014 686 126 9.7826 42.1

05 Time-lag Rec 08,04,02 0.703 300 064 0.009 955 203 0.023 340 290 0.016 268 503 9.7826 1.667

06 Recurrent NN 08,04,02 0.739 407 946 0.009 971 926 0.018 246 162 0.013 818 155 9.7826 493.8

The Jordan/Elman NN was trained for five times, and
the best performance with respect to MSE of training was
observed during the fifth run at the end of 1000 epochs.
Similarly, the best cross-validation performance was noticed
during the fifth run at the end of 1000 epochs. Following
graphs depict the results for simulation at serial number 2
in Table 3, for r = 0.788 279 49.

Figure 8 depicts the variation of average of minimum
MSE for 5 runs versus the number of PEs in the second
hidden layer. It is observed that for four processing elements
in the second hidden layer, the MSE on CV attained its
minimum value. When PEs are increased beyond 4, the MSE
on CV was seen to increase. Therefore, 4 PEs are chosen for
second hidden layer.

Figure 9 depicts the variation of average training MSE
versus the number of epochs. Five different runs with new
random initialization of connection weights of NNs are
shown below. It is observed that for each run (training cycle),
average MSE decreases as number of epochs increases. It is
worthwhile to notice that this trend of decrease in MSE is
consistent for all the five runs.

Figure 10 shows the variation of desired output and
actual NN output versus the number of exemplars. The
covariance between the desired output and actual NN output
is indicated by correlation coefficient, r = 0.788 279 49.

The optimum value for correlation coefficient, r =
0.805 945 071, is observed for a Jordan/Elman NN with three
hidden layers as depicted in Table 2 (serial number 2). The
NN was tested with leave-N-out mode using increasing MSE
criterion over cross validation samples, with a window of
as minimum as 30 samples in testing phase traversing over
the complete range of 890 samples, with remaining samples
(860) for training phase. Table 4 shows the values obtained
during experimentation.

The graph in Figure 11 depicts the variation of desired
output and actual network output as a function of number
of exemplars. It is clearly seen that both outputs covary as
it is evident from the value of r = 0.858 319 624. It is seen
that the output of the Jordan/Elman NN closely follows the
desired EMG signal output. Only 300 instances out of 3000
are shown in this graph as a scattered plot.

Simulations were carried out for comparison of other
neural network’s performance like multilayer perceptron NN
(MLP), generalized feedforward NN, modular NN, RBF NN,
time-lag recurrent network, and a recurrent NN with other
parameters similar to Jordan/Elman NN, and the following

results were obtained with maximum correlation coefficient
(r) value as indicated in Table 5, that is, r = 0.739 407 946.
Table 5 demonstrates the performance of six different NN
configurations with respect to r, MSE, N/P, and t.

7. Conclusion

EMG signal is a very important biomedical signal associated
with muscle activity, giving useful information about nerve
system in order to detect abnormal muscle electrical activities
that occur in many diseases and conditions like muscu-
lar dystrophy, inflammation of muscles, pinched nerves,
peripheral nerve damages, amyotrophic lateral sclerosis, disc
herniation, myasthenia gravis, and others. The detection and
measurement of low-frequency and lower-magnitude EMG
signals is noise-prone. Removal of noise from a typical EMG
signal using Jordan/Elman NN has been studied in this paper.
It is demonstrated that Jordan/Elman NN elegantly reduces
the noise from the EMG signal. The difference between the
noisy EMG signal and the desired EMG signal is computed
as a performance measure (MSE) and is found to be in
the expected range approaching to 0.01. The minimum
MSE criterion is found satisfactory (0.0099–0.01) in trained
Jordan/Elman NN and found to perform better during
testing phase (0.01) as it is evident from all similar graphs
as in Figure 2. The correlation coefficient (r) is also found
to be in the desired range (0.805 945 071 at serial number 2
Table 2), so that the network output and the desired output
covary, that is, varying by the same amount as depicted in
Figure 7. This covariance is also observed in leave-N-out
mode with improved performance (i.e., r = 0.858 319 624
as obvious from Figure 11 and Table 4). Moderately smaller
values of N/P also show that the Jordan/Elman NN so
designed is simpler to design and is capable of generalization.
In addition, it is faster as it is evident from smaller values of t.
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