期刊论文详细信息
Journal of Space Weather and Space Climate
SWIFF: Space weather integrated forecasting framework
Kris Borremans5  Roberto Susino4  Alessandro Bemporad7  Clare E. Parnell1,11  Duncan H. Mackay1,11  Jacob Trier Frederiksen1,12  Åke Nordlund1,12  Anna Lisa Restante3  Vyacheslav Olshevsky6  Matteo Faganello8  Francesco Pegoraro1  Francesco Califano1  Pierre Henri1  Pavel M. Trávníček2  Ondřej Šebek1,10  Stefaan Poedts3  Stefano Markidis9  Rony Keppens3  Viviane Pierrard5  Giovanni Lapenta3 
[1] Dipartimento di Fisica, Universita di Pisa,Largo Pontecorvo 3,56127 Pisa,Italy;Space Sciences Laboratory, University of California Berkeley,7 Gauss Way,Berkeley,CA 94720,USA;Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven,Celestijnenlaan 200B,3001 Leuven,Belgium;INAF – Catania Astrophysical Observatory, via S. Sofia 78,95123 Catania,Italy;Belgian Institute for Space Aeronomy, Space Physics,3 ringlaan,B-1180 Brussels,Belgium;Main Astronomical Observatory, NAS of Ukraine,Zabolotnoho 27,03680 Kyiv,Ukraine;INAF – Turin Astronomical Observatory,via Osservatorio 20,10025 Pino Torinese (TO),Italy;Laboratoire de PIIM, UMR 6633, CNRS, Aix-Marseille Universite,Marseille,France;PDC Center for High Performance Computing, KTH Royal Institute of Technology,Stockholm,Sweden;Astronomical Institute, Institute of Atmospheric Physics, AS CR,Boční II 1401,14131 Prague,Czech Republic;School of Mathematics & Statistics, University of St Andrews, North haugh, St Andrews,Fife KY16 9SS,Scotland;Niels Bohr Institute, University of Copenhagen,Juliane Maries Vej 3,DK-2100 Copenhagen,Denmark
关键词: high performance computing;    modelling;    space weather;   
Others  :  800637
DOI  :  doi:10.1051/swsc/2013027
 received in 2012-05-01, accepted in 2013-01-27,  发布年份 2013
PDF
【 摘 要 】

SWIFF is a project funded by the Seventh Framework Programme of the European Commission to study the mathematical-physics models that form the basis for space weather forecasting. The phenomena of space weather span a tremendous scale of densities and temperature with scales ranging 10 orders of magnitude in space and time. Additionally even in local regions there are concurrent processes developing at the electron, ion and global scales strongly interacting with each other. The fundamental challenge in modelling space weather is the need to address multiple physics and multiple scales. Here we present our approach to take existing expertise in fluid and kinetic models to produce an integrated mathematical approach and software infrastructure that allows fluid and kinetic processes to be modelled together. SWIFF aims also at using this new infrastructure to model specific coupled processes at the Solar Corona, in the interplanetary space and in the interaction at the Earth magnetosphere.

【 授权许可】

   
© G. Lapenta et al., Published by EDP Sciences 2013

【 预 览 】
附件列表
Files Size Format View
20140707200218564.pdf 3668KB PDF download
Fig. 14. 84KB Image download
Fig. 13. 72KB Image download
Fig. 12. 57KB Image download
Fig. 11. 50KB Image download
Fig. 10. 79KB Image download
Fig. 9. 53KB Image download
Fig. 8. 69KB Image download
Fig. 7. 61KB Image download
Fig. 6. 84KB Image download
Fig. 5. 69KB Image download
Fig. 4. 67KB Image download
Fig. 3. 62KB Image download
Fig. 2. 96KB Image download
Fig. 1. 44KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

【 参考文献 】
  • [1]Antiochos, S. K., P. J. MacNeice, D. S. Spicer, and J. A. Klimchuk, The dynamic formation of prominence condensations, Astrophys. J., 512, 985–991, 1999. [NASA ADS]
  • [2]Baalrud, S.D., A. Bhattacharjee, Y.-M. Huang, and K. Germaschewski, Hall magnetohydrodynamic reconnection in the plasmoid unstable regime, Physics of Plasmas, 18 (9), 092108, 2011.
  • [3]Baty, H., R. Keppens, and P. Comte, The two-dimensional magnetohydrodynamic Kelvin-Helmholtz instability: Compressibility and large-scale coalescence effects, Phys. Plasmas, 10, 4661–4674, 2003. [NASA ADS]
  • [4]Baumann, G., and Å. Nordlund, Particle-in-cell simulation of electron acceleration in solar coronal jets, Astrophys. J., 759, L9, 2012. [NASA ADS]
  • [5]Baumann, G., K. Galsgaard, and Å. Nordlund, 3D solar null point reconnection MHD simulations, Sol. Phys., in press, DOI: 10.1007/s11207-012-0168-5, 2012a.
  • [6]Baumann, G., T. Haugbølle, and Å. Nordlund, Kinetic modeling of particle acceleration in a solar null point reconnection region, Astrophys. J., accepted [arxiv:1204.4947] 2012b.
  • [7]Bemporad, A., Spectroscopic detection of turbulence in post-CME current sheets, Astrophys. J., 689, 572–584, 2008. [NASA ADS]
  • [8]Benck, S., M. Cyamukungu, J. Cabrera, L. Mazzino, and V. Pierrard, The Transient Observation-based Particle (TOP) model and its potential application in radiation effects evaluation, J. Space Weather Space Clim., 3, A03, 2013.
  • [9]Birn, J., J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, and P.L. Pritchett, Geospace Environmental Modeling (GEM) magnetic reconnection challenge, J. Geophys. Res., 106, 3715–3720, 2001. [NASA ADS]
  • [10]Birn, J., K. Galsgaard, M. Hesse, M. Hoshino, J. Huba, G. Lapenta, P.L. Pritchett, K. Schindler, L. Yin, J. Büchner, T. Neukirch, and E.R. Priest, Forced magnetic reconnection, Geophys. Res. Lett., 32, L06105, 2005.
  • [11]Brackbill, J.U., FLIP MHD: A particle-in-cell method for magnetohydrodynamics, J. Comput. Phys., 96, 163–192, 1991. [NASA ADS]
  • [12]Brackbill, J.U., and B.I. Cohen, Eds. Multiple time scales, 1985.
  • [13]Bruno, R., and V. Carbone, The Solar Wind as a Turbulence Laboratory, Living Rev. Sol. Phys., 2 (4), 2005.
  • [14]Calder, A.C., B. Fryxell, T. Plewa, R. Rosner, L.J. Dursi, V.G. Weirs, T. Dupont, H.F. Robey, J.O. Kane, A.A. Remington, et al., On validating an astrophysical simulation code, Astrophys. J. Suppl., 143, 201, 2002.
  • [15]Califano, F., M. Faganello, F. Pegoraro, and F. Valentini, Solar wind interaction with the Earth’s magnetosphere: the role of reconnection in the presence of a large scale sheared flow, Nonlinear Processes Geophys., 16, 1–10, 2009.
  • [16]Cho, J., A. Lazarian, and E.T. Vishniac, Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium, Astrophys. J., 564, 291–301, 2002. [NASA ADS]
  • [17]Cho, J., A. Lazarian, and E.T. Vishniac, MHD Turbulence: Scaling Laws and Astrophysical Implications. Edited by E., Falgarone, and T. Passot (Berlin: Springer Verlag), Turbulence and Magnetic Fields in Astrophysics, Lecture Notes in Physics, 614, 56–98, 2003.
  • [18]Ciaravella, A., and J.C. Raymond, The current sheet associated with the 2003 November 4 coronal mass ejection: density, temperature, thickness, and line width, Astrophys. J., 686, 1372–1382, 2008. [NASA ADS]
  • [19]Darrouzet, F., V. Pierrard, J. Cabrera, K. Borremans, G. Lointier, N. Ganushkina, J. De Keyser, Links between the plasmapause and the radiation belt boundaries from Cluster measurements. Edited by A. Abbasi, and N. Giesen, EGU General Assembly Conference Abstracts, Vol. 14 of EGU General Assembly Conference Abstracts, pp. 8956, 2012.
  • [20]Dulk, G.A., and D.J. McLean, Coronal magnetic fields, Sol. Phys., 57, 279–295, 1978. [NASA ADS]
  • [21]Escoubet, C.P., A. Pedersen, R. Schmidt, and P.A. Lindqvist, Density in the magnetosphere inferred from ISEE 1 spacecraft potential, J. Geophys. Res., 102, 17595–17610, 1997.
  • [22]Eyink, G.L., A. Lazarian, and E.T. Vishniac, Fast magnetic reconnection and spontaneous stochasticity, Astrophys. J., 743, 51, 2011. [NASA ADS]
  • [23]Faganello, M., F. Califano, and F. Pegoraro, Time window for magnetic reconnection in plasma configurations with velocity shear, Phys. Rev. Lett., 101 (17), 175003, 2008a.
  • [24]Faganello, M., F. Califano, and F. Pegoraro, Numerical evidence of undriven, fast reconnection in the solar-wind interaction with earth’s magnetosphere: formation of electromagnetic coherent structures, Phys. Rev. Lett., 101 (10), 105001, 2008b.
  • [25]Faganello, M., F. Califano, and F. Pegoraro, Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar-wind interaction with earth’s magnetosphere, Physical Review Letters, 100 (1), 015001, 2008c.
  • [26]Faganello, M., F. Califano, and F. Pegoraro, Being on time in magnetic reconnection, New J. Phys., 11, 063008, 2009.
  • [27]Fairfield, D.H., A. Otto, T. Mukai, S. Kokubun, R.P. Lepping, J.T. Steinberg, A.J. Lazarus, and T. Yamamoto, Geotail observations of the Kelvin-Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields, J. Geophys. Res., 105, 21159–21174, 2000.
  • [28]Frederiksen, J.T., T. Haugb0lle, and Å. Nordlund, Trans-Debye Scale plasma modeling & stochastic grb wakefield plasma processes. Edited by M. Axelsson, American Institute of Physics Conference Series, 1054, 87–97, 2008.
  • [29]Fromang, S., P. Hennebelle, and R. Teyssier, A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics, A&A, 457, 371–384, 2006. [NASA ADS]
  • [30]Galsgaard, K., and Å. Nordlund, Heating and activity of the solar corona 1. Boundary shearing of an initially homogeneous magnetic field, J. Geophys. Res., 101, 13445–13460, 1996. [NASA ADS]
  • [31]Galsgaard, K., and Å. Nordlund, Heating and activity of the solar corona. 2. Kink instability in a flux tube, J. Geophys. Res., 102, 219–230, 1997.
  • [32]Gibson, S.E., A. Fludra, F. Bagenal, D. Biesecker, G. del Zanna, and B. Bromage, Solar minimum streamer densities and temperatures using Whole Sun Month coordinated data sets, J. Geophys. Res., 104, 9691–9700, 1999. [NASA ADS]
  • [33]Gomez, D.O., and C. Ferro Fontan, Development of magnetohydrodynamic turbulence in coronal loops, Astrophys. J., 394, 662–669, 1992.
  • [34]Hasegawa, H., B. Sonnerup, M. Dunlop, A. Balogh, S. Haaland, B. Klecker, G. Paschmann, B. Lavraud, I. Dandouras, and H. Rème, Reconstruction of two-dimensional magnetopause structures from Cluster observations: verification of method, Ann. Geophys., 22, 1251–1266, 2004.
  • [35]Haugboelle, T., Modelling relativistic astrophysics at the large and small scale, Astrophys. J., [arXiv:astroph/0510292], 2005.
  • [36]Henri, P., F. Califano, M. Faganello, and F. Pegoraro, Magnetised Kelvin-Helmholtz instability in the intermediate regime between subsonic and supersonic regimes, Phys. Plasmas, 19 (7), 072908, 2012.
  • [37]Henri, P., O. Sebek, J.T. Frederiksen, R. Keppens, S.S. Cerri, et al., Magnetopause challenge: magnetised Kelvin-Helmholtz instability, In preparation, 2013.
  • [38]Hewett, D.W., and A.B. Langdon, Electromagnetic direct implicit plasma simulation, J. Comput. Phys., 72, 121–155, 1987.
  • [39]Ji, H., and W. Daughton, Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas, Phys. Plasmas, 18 (11), 111–207, 2011.
  • [40]Keppens, R., and O. Porth, Coupling strategies for hyperbolic pdes, J. Comput. Appl. Math., submitted, 2012.
  • [41]Keppens, R., M. Nool, G. Tóth, and J.P. Goedbloed, Adaptive Mesh Refinement for conservative systems: multi-dimensional efficiency evaluation, Comput. Phys. Commun., 153, 317–339, 2003. [NASA ADS]
  • [42]Keppens, R., Z. Meliani, A.J. van Marle, P. Delmont, A. Vlasis, and B. van der Holst, Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics, J. Comput. Phys., 231, 718–744, 2012. [NASA ADS]
  • [43]Ko, Y.-K., J.C. Raymond, J. Lin, G. Lawrence, J. Li, and A. Fludra, Dynamical and physical properties of a post-coronal mass ejection current sheet, Astrophys. J., 594, 1068–1084, 2003. [NASA ADS]
  • [44]Kolmogorov, A., The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers, Akademiia Nauk SSSR Doklady, 30, 301–305, 1941.
  • [45]Kritsuk, A.G., Å. Nordlund, D. Collins, P. Padoan, M.L. Norman, et al., Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence, Astrophys. J., 737, 2011. [NASA ADS]
  • [46]Lapenta, G., Self-Feeding Turbulent Magnetic Reconnection on Macroscopic Scales, Phys. Rev. Lett., 100, 235001, 2008. [NASA ADS][PubMed]
  • [47]Lapenta, G., Particle simulations of space weather, J. Comput. Phys., 231, 795–821, 2012.
  • [48]Lapenta, G., and L. Bettarini, Spontaneous transition to a fast 3D turbulent reconnection regime, Europhys. Lett., 93, 65001, 2011.
  • [49]Lapenta, G., and A. Lazarian, Achieving fast reconnection in resistive MHD models via turbulent means, Nonlinear Processes Geophys., 19, 251–263, 2012.
  • [50]Lapenta, G., J.U. Brackbill, and P. Ricci, Kinetic approach to microscopic-macroscopic coupling in space and laboratory plasmas, Phys. Plasmas, 13 (5), 055904, 2006.
  • [51]Lazarian, A., and E.T. Vishniac, Reconnection in a weakly stochastic field, Astrophys. J., 517, 700–718, 1999. [NASA ADS]
  • [52]Lazarian, A., G.L. Eyink, and E.T. Vishniac, Relation of astrophysical turbulence and magnetic reconnection, Phys. Plasmas, 19 (1), 012105, 2012.
  • [53]Longcope, D.W., and R.N. Sudan, Evolution and statistics of current sheets in coronal magnetic loops, Astrophys. J., 437, 491–504, 1994. [NASA ADS]
  • [54]Mac Low, M.-M., R.S. Klessen, A. Burkert, and M.D. Smith, Kinetic energy decay rates of supersonic and super-Alfvénic turbulence in star-forming clouds, Phys. Rev. Lett., 80, 2754–2757, 1998. [NASA ADS]
  • [55]Mackay, D.H., and A.A. van Ballegooijen, Models of the large-scale corona. I. formation, evolution, and liftoff of magnetic flux ropes, Astrophys. J., 641, 577–589, 2006. [NASA ADS]
  • [56]Markidis, S., G. Lapenta, and Rizwan-uddin, Multi-scale simulations of plasma with iPIC3D, Math. Comput. Simul., 80, 1509–1519, 2010.
  • [57]Matthews, A. P., Current advance method and cyclic Leapfrog for 2D multispecies hybrid plasma simulations, J. Comput. Phys., 112, 102–116, 1994. [NASA ADS]
  • [58]Mikic, Z., D.D. Schnack, and G. van Hoven, Creation of current filaments in the solar corona, Astrophys. J., 338, 1148–1157, 1989. [NASA ADS]
  • [59]Miura, A., Kelvin-Helmholtz instability for supersonic shear flow at the magnetospheric boundary, Geophys. Res. Lett., 17, 749–752, 1990.
  • [60]Nordlund, Å., and K. Galsgaard, Topologically Forced Reconnection, edited by G.M. Simnett, C.E. Alissandrakis, and L. Vlahos (Berlin: Springer Verlag), European Meeting on Solar Physics, Lecture Notes in Physics, 489, pp. 179, 1997. [NASA ADS]
  • [61]Padoan, P., and Å. Nordlund, A super-Alfvénic model of dark clouds, Astrophys. J., 526, 279–294, 1999. [NASA ADS]
  • [62]Palermo, F., M. Faganello, F. Califano, and F. Pegoraro, Kelvin-Helmholtz vortices and secondary instabilities in super-magnetosonic regimes, Ann. Geophys., 29, 1169–1178, 2011a.
  • [63]Palermo, F., M. Faganello, F. Califano, F. Pegoraro, and O. Le Contel, Compressible Kelvin-Helmholtz instability in supermagnetosonic regimes, J. Geophys. Res. (Space Physics), 116, A04223, 2011b.
  • [64]Parker, E.N., Sweet’s mechanism for merging magnetic fields in conducting fluids, J. Geophys. Res., 62, 509–520, 1957. [NASA ADS]
  • [65]Parker, E.N., Topological dissipation and the small-scale fields in turbulent gases, Astrophys. J., 174, 499, 1972. [NASA ADS]
  • [66]Parker, E.N., Magnetic neutral sheets in evolving fields. I – General theory, Astrophys. J., 264, 635–647, 1983a. [NASA ADS]
  • [67]Parker, E. N., Absence of equilibrium among close-packed twisted flux tubes, Geophys. Astrophys. Fluid Dyn., 23, 85–102, 1983b.
  • [68]Parker, E. N., Magnetic reorientation and spontaneous formation of tangential discontinuities in deformed magnetic fields, Astrophys. J., 318, 876–887, 1987.
  • [69]Parker, E. N., Nanoflares and the solar X-ray corona, Astrophys. J., 330, 474–479, 1988. [NASA ADS]
  • [70]Patsourakos, S., and A. Vourlidas, Evidence for a current sheet forming in the wake of a coronal mass ejection from multi-viewpoint coronagraph observations, A&A, 525, A27, 2011.
  • [71]Petrinec, S. M., T. Mukai, A. Nishida, T. Yamamoto, T. K. Nakamura, and S. Kokubun, Geotail observations of magnetosheath flow near the magnetopause, using Wind as a solar wind monitor, J. Geophys. Res., 102, 26943–26960, 1997.
  • [72]Pierrard, V., N.V. Pogorelov, E. Audit, and G.P. Zank, The kinetic approach to model space plasmas, Numerical modeling of space plasma flows, Astronum-2009, Vol. 429 of Astronomical Society of the Pacific Conference Series, 233, 2010.
  • [73]Pierrard, V., A numerical method to determine the particle velocity distribution functions in space, Numerical modeling of space plasma flows, Astronomical Society of the Pacific Conference series, 444, pp. 166–176, 2011a.
  • [74]Pierrard, V., Solar wind electron transport: interplanetary electric field and heat conduction, Space Sci. Rev., 100, February 2011b.
  • [75]Pierrard, V., Effects of suprathermal particles in space plasmas, ICNS Annual International Astrophysics Conference Proc., American Institute of Physics, 1436, pp. 61–66, 2012a.
  • [76]Pierrard, V., Kinetic models for solar wind electrons, protons and ions, INTECH, ISBN 978-953-51-0339-4, 2012b.
  • [77]Pierrard, V., and S. Benck, The dynamics of the terrestrial radiation belts and its links to the plasmasphere, in Edited by Q., Hu, G. Li, G.P. Zank, X. Ao, O. Verkhoglyadova, and J.H. Adams. American Institute of Physics Conference Series, 1500, pp. 216–221, DOI: 10.1063/1.4768769, 2012.
  • [78]Pierrard, V., and K. Borremans, Fitting the AP8 spectra to determine the proton momentum distribution functions in space radiations, Radiat. Meas., 47, 401–405, 2012a.
  • [79]Pierrard, V., K. Borremans, A. Abbasi, and N. Giesen, Space weather effect on the inner magnetosphere: kinetic models for the plasmasphere-ionosphere coupled system, the polar wind and the radiation belts, EGU General Assembly Conference Abstracts, Vol. 14 of EGU General Assembly Conference Abstracts, 1769, 2012b.
  • [80]Pierrard, V., and K. Stegen, A three-dimensional dynamic kinetic model of the plasmasphere, J. Geophys. Res. (Space Physics), 113, A10209, 2008.
  • [81]Pierrard, V., and M. Voiculescu, The 3D model of the plasmasphere coupled to the ionosphere, Geophys. Res. Lett., 38, L12104, 2011.
  • [82]Pierrard, V., M. Lazar, and R. Schlickeiser, Evolution of the electron distribution function in the whistler wave turbulence of the solar wind, Sol. Phys., 269, 421–438, 2011. [NASA ADS]
  • [83]Powell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284–309, 1999. [NASA ADS]
  • [84]Ricci, P., G. Lapenta, and J.U. Brackbill, A simplified implicit maxwell solver, J. Comput. Phys., 183, 117–141, 2002.
  • [85]Saint-Hilaire, P., S. Krucker, and R.P. Lin, X-ray emission from the base of a current sheet in the wake of a coronal mass ejection, Astrophys. J., 699, 245–253, 2009. [NASA ADS]
  • [86]Skender, M., and G. Lapenta, On the instability of a quasi equilibrium current sheet and the onset of impulsive bursty reconnection, Phys. Plasmas, 17, 022905, 2010. [NASA ADS]
  • [87]Stone, J.M., E.C. Ostriker, and C.F. Gammie, Dissipation in compressible magnetohydrodynamic turbulence, Astrophys. J., 508, L99–L102, 1998. [NASA ADS]
  • [88]Strauss, H.R., Three-dimensional driven reconnection in an axially bounded magnetic field, Astrophys. J., 381, 508–514, 1991.
  • [89]Sugiyama, T., and K. Kusano, Multi-scale plasma simulation by the interlocking of magnetohydrodynamic model and particle-in-cell kinetic model, J. Comput. Phys., 227, 1340–1352, 2007.
  • [90]Sugiyama, T., K. Kusano, S. Hirose, and A. Kageyama. MHD PIC connection model in a magnetosphere ionosphere coupling system, J. Plasma Phys., 72, 945, 2006.
  • [91]Sulem, P.L., and T. Passot. FLR Landau fluids for collisionless plasmas, Commun. Nonlinear Sci. Numer. Simul., 13, 189–196, 2008.
  • [92]Sweet, P.A., The neutral point theory of solar flares. In Edited by B. Lehnert, Electromagnetic Phenomena in Cosmical Physics, IAU Symposium, 6, pp. 123, 1958.
  • [93]Tenerani, A., M. Faganello, F. Califano, and F. Pegoraro. Nonlinear vortex dynamics in an inhomogeneous magnetized plasma with a sheared velocity field, Plasma Phys. Controlled Fusion, 53 (1), 015003, 2011.
  • [94]Tóth, G.. A General Code for Modeling MHD Flows on Parallel Computers: Versatile Advection Code, Astrophys. Lett. Commun., 34, 245, 1996.
  • [95]Tóth, G.. The lasy preprocessor and its application to general multi-dimensional codes, J. Comput. Phys., 138, 981, 1997.
  • [96]Tóth, G., I.V. Sokolov, T.I. Gombosi, D.R. Chesney, C.R. Clauer, et al., Space weather modeling framework: a new tool for the space science community, J. Geophys. Res., 110 (A12226), 1–21, 2005.
  • [97]Tóth, G., B. van der Holst, I.V. Sokolov, D.L. de Zeeuw, T.I. Gombosi, et al., Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870–903, 2012. [NASA ADS]
  • [98]Uzdensky, D.A., D.A. Loureiro, and A.A. Schekochihin, Fast magnetic reconnection in the plasmoid-dominated Regime, Phys. Rev. Lett., 105, 235002, 2010. [NASA ADS]
  • [99]Valentini, F., F. Califano, and P. Veltri, Two-dimensional kinetic turbulence in the solar wind, Phys. Rev. Lett., 104 (20), 205002, 2010.
  • [100]van Ballegooijen, A.A., Electric currents in the solar corona and the existence of magnetostatic equilibrium, Astrophys. J., 298, 421–430, 1985. [NASA ADS]
  • [101]van Ballegooijen, A.A., Cascade of magnetic energy as a mechanism of coronal heating, Astrophys. J., 311, 1001–1014, 1986. [NASA ADS]
  • [102]Vásquez, A.M., A.A. van Ballegooijen, and J.C. Raymond, The effect of proton temperature anisotropy on the solar minimum corona and wind, Astrophys. J., 598, 1361–1374, 2003.
  • [103]Webb, D.F., J. Burkepile, T.G. Forbes, and P. Riley, Observational evidence of new current sheets trailing coronal mass ejections, J. Geophys. Res. (Space Physics), 108, 1440, 2003. [NASA ADS]
  • [104]Xia, C., P.F. Chen, R. Keppens, and A.J. van Marle, Formation of solar filaments by steady and nonsteady chromospheric heating, Astrophys. J., 737, 27, 2011. [NASA ADS]
  • [105]Xia, C., P.F. Chen, and R. Keppens, Simulations of prominence formation in the magnetized solar corona by chromospheric heating, Astrophys. J. Lett., 748, 26, 2012. [NASA ADS]
  • [106]Yeates, A.R., and D.H. Mackay, Initiation of coronal mass ejections in a global evolution model, Astrophys. J., 699, 1024–1037, 2009. [NASA ADS]
  • [107]Yeates, A.R., D.H. Mackay, and A.A. van Ballegooijen, Modelling the global solar corona: filament chirality observations and surface simulations, Sol. Phys., 245, 87–107, 2007.
  • [108]Yeates, A.R., D.H. Mackay, and A.A. van Ballegooijen, Modelling the global solar corona II: coronal evolution and filament chirality comparison, Sol. Phys., 247, 103–121, 2008. [NASA ADS]
  • [109]Ziegler, U., Self-gravitational adaptive mesh refinement magnetohydrodynamics with the nirvana code, A&A, 435, 385–395, 2005. [NASA ADS]
  文献评价指标  
  下载次数:144次 浏览次数:19次