期刊论文详细信息
Journal of Space Weather and Space Climate
Solar activity impact on the Earth’s upper atmosphere
Joan Miquel Torta5  Mario Parisi3  Sergio Magdaleno4  David Altadill5  Borislav Andonov6  Estefania Blanch5  Dalia Buresova1  Norbert Jakowski7  Jan Lastovicka1  Andrei Mikhailov8  Plamen Mukhtarov6  Dora Pancheva6  Loredana Perrone2  Ioanna Tsagouri9  Ivan Kutiev6 
[1] Institute of Atmospheric Physics ASCR,14131 Prague,Czech Republic;Istituto Nazionale di Geofisica e Vulcanologia,00143 Rome,Italy;Dipartimento di Fisica, Università degli Studi di Roma,00185 Rome,Italy;Atmospheric Sounding Station “El Arenosillo”, INTA,Huelva,Spain;Ebro Observatory, University Ramon Llull, CSIC,E-43520 Roquetes,Spain;National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences,1113 Sofia,Bulgaria;Institute of Communications and Navigation, German Aerospace Center,51147 Cologne,Germany;Institute of Terrestrial Magnetism, Ionosphere, and Radio Propagation, Russian Academy of Sciences,142190 Troitsk, Moskovskaya obl.,Russia;Institute for Space Applications and Remote Sensing, National Observatory of Athens,15236 Mount Penteli,Greece
关键词: data analysis;    total electron content;    storm;    solar activity;    ionosphere;   
Others  :  800649
DOI  :  doi:10.1051/swsc/2013028
 received in 2012-06-08, accepted in 2013-02-05,  发布年份 2013
PDF
【 摘 要 】

The paper describes results of the studies devoted to the solar activity impact on the Earth’s upper atmosphere and ionosphere, conducted within the frame of COST ES0803 Action.

【 授权许可】

   
© I. Kutiev et al., Published by EDP Sciences 2013

【 预 览 】
附件列表
Files Size Format View
20140707200918374.pdf 4696KB PDF download
Fig. 19. 20KB Image download
Fig. 18. 25KB Image download
Fig. 17. 55KB Image download
Fig. 16. 51KB Image download
Fig. 15. 60KB Image download
Fig. 14. 38KB Image download
Fig. 13. 84KB Image download
Fig. 12. 65KB Image download
Fig. 11. 83KB Image download
Fig. 10. 79KB Image download
Fig. 9. 60KB Image download
Figure 3 184KB Image download
Fig. 7. 59KB Image download
Fig. 6. 53KB Image download
Fig. 5. 101KB Image download
Fig. 4. 63KB Image download
Fig. 3. 61KB Image download
Fig. 2. 54KB Image download
Fig. 1. 42KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Figure 3

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

Fig. 18.

Fig. 19.

【 参考文献 】
  • [1]Altadill, D., and E.M. Apostolov, Time and scale size of planetary wave signatures in the ionospheric F region: Role of the geomagnetic activity and mesosphere/lower thermosphere wind, J. Geophys. Res., 108, 1403, DOI: 10.1029/2003JA010015, 2003.
  • [2]Altadill, D., E.M. Apostolov, J.G. Sole, and Ch. Jacobi, Origin and development of vertical propagating oscillations with periods of planetary waves in the ionospheric F region, Phys. Chem. Earth Part C, 26, 387–393, 2001.
  • [3]Altadill, D., J.M. Torta, and E. Blanch, Proposal of new models of the bottom-side B0 and B1 parameters for IRI, Adv. Space Res., 43, 1825–1834, 2009.
  • [4]Andonov, B., P. Mukhtarov, and D. Pancheva, Empirical model of the TEC response to the geomagnetic activity over the North American region, Adv. Space Res., 48, 1041–1048, DOI: 10.1016/j.asr.2011.05.007, 2011.
  • [5]Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu, STORM: an empirical storm-time ionospheric correction model, 1, Model description, Radio Sci., 37, 5, 1070, DOI: 10.1029/2001RS002467, 2002.
  • [6]Bartels, J., Twenty-seven day recurrences in terrestrial-magnetic and solar activity, 1923–1933, Terr. Magn. Atmos. Electr., 39 (3), 201–202, DOI: 10.1029/TE039i003p00201, 1934.
  • [7]Belehaki, A., P. Marinov, I. Kutiev, N. Jakowski, and S.M. Stankov, Comparison of the topside ionosphere scale height determined by topside sounders model and bottomside digisonde profiles, Adv. Space Res., 37, 963–966, 2006.
  • [8]Bilitza, D., International reference ionosphere 2000, Radio Science, 36 (2), 261–275, 2000.
  • [9]Blanch, E., Typical behaviour of the ionospheric vertical structure during quiet and disturbed conditions, Doctoral Thesis, Univ. Ramon Llull, Barcelona, Spain, 2009.
  • [10]Blanch, E., and D. Altadill, Ionospheric peak height density disturbance in response to solar wind conditions: a potential empirical model, Paper presented at the COST ES0803 Workshop, 1–3 April, Frascati, Italy, 2009a.
  • [11]Blanch, E., and D. Altadill, Empirical model for the electron density peak height disturbance in response to solar wind conditions, Paper presented at the 6th General Assembly of the European Geosciences Union, Session ST12, EGU2009- 4568, Vienna, Austria, 19-24 April, 2009b.
  • [12]Blanch, E., and D. Altadill, Mid-latitude F-region peak height changes in response to interplanetary magnetic field conditions and modeling results, J. Geophys. Res., 117, A12, DOI: 10.1029/2012JA018009, 2012.
  • [13]Borovsky, J.E., and M.H. Denton, Differences between CME-driven storms and CIR-driven storms, J. Geophys. Res., 111, A07S08, DOI: 10.1029/2005JA011447, 2006.
  • [14]Bremer, J., J. Laštovička, A.V. Mikhailov, D. Altadill, P. Bencze, D. Burešová, G. De Franceschi, C. Jacobi, S. Kouris, L. Perrone, and E. Turunen, Climate of the upper atmosphere, Ann. Geophys., 52 (3/4), 273–299, 2009.
  • [15]Dasso, S., C.H. Mandrini, B. Schmieder, H. Cremades, C. Cid, et al., Linking two consecutive nonmerging magnetic clouds with their solar sources, J. Geophys. Res., 114, A2, DOI: 10.1029/2008JA013102, 2009.
  • [16]Denton, M.H., T. Ulich, and E. Turunen, Modification of midlatitude ionospheric parameters in the F2 layer by persistent high-speed solar wind streams, Space Weather, 7, S04006, DOI: 10.1029/2008SW000443, 2009.
  • [17]Emmert, J.T., J.M. Picone, and R.R. Meier, Thermospheric global average density trends 1967–2007, derived from orbits of 5000 near-Earth objects, Geophys. Res. Lett., 35, L05101, DOI: 10.1029/2007GL032809, 2008.
  • [18]Hall, C.M., K. Rypdal, and M. Rypdal, The E region at 69° N, 19° E: trends, significances, and detectability, J. Geophys. Res., 116, A05309, DOI: 10.1029/2011JA016431, 2011.
  • [19]Heise, S., N. Jakowski, A. Wehrenpfennig, Ch. Reigber, and H. Luehr, Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: initial results, Geophys. Res. Lett., 29 (14), DOI: 10.1029/2002GL014738, 2002.
  • [20]Jakowski, N., TEC monitoring by using satellite positioning systems, in Modern Ionospheric Science, edited by H. Kohl, R. Rüster, and K. Schlegel, EGS, Katlenburg-Lindau, ProduServ GmbH Verlagsservice, Berlin, pp. 371–390, 1996.
  • [21]Jakowski, N., B. Fichtelmann, and A. Jungstand, Solar activity control of ionospheric and thermospheric processes, J. Atmos. Terr. Phys., 53, 1125–1130, 1991.
  • [22]Jakowski, N., J. Mielich, C. Borries, L. Cander, A. Krankowski, B. Nava, and S.M. Stankov, Large scale ionospheric gradients over Europe observed in October 2003, J. Atmos. Sol. Terr. Phys., 70, 15, DOI: 10.1016/j.jastp.2008.03.020, 2008.
  • [23]Jakowski, N., C. Mayer, M.M. Hoque, and V. Wilken, TEC models and their use in ionosphere monitoring, Radio Sci., 46, RS0D18, DOI: 10.1029/2010RS004620, 2011.
  • [24]Koutroumbas, K., I. Tsagouri, and A. Belehaki, Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe, Ann. Geophys., 26 (2), 371–386, 2008.
  • [25]Kutiev, I., S. Watanabe, Y. Otsuka, and A. Saito, Total electron content behavior over Japan during geomagnetic storms, J. Geophys. Res., 110 (A1), A01308, DOI: 10.1029/2004JA010586, 2005.
  • [26]Kutiev, I., Y. Otsuka, D. Pancheva, and R. Heelis, Response of low-latitude ionosphere to medium-term changes of solar and geomagnetic activity, J. Geophys. Res., 117, A08330, DOI: 10.1029/2012JA017641, 2012.
  • [27]Lastovicka, J., Global pattern of trends in the upper atmosphere and ionosphere: recent progress, J. Atmos. Solar Terr. Phys., 71 (14-15), 1514–1528, 2009.
  • [28]Lastovicka, J., R.A. Akmaev, G. Beig, J. Bremer, and J.T. Emmert, Global change in the upper atmosphere, Science, 314, 1253–1254, DOI: 10.1126/science.1135134, 2006.
  • [29]Lastovicka, J., S.C. Solomon, and L. Qian, Trends in the neutral and ionized upper atmosphere, Space Sci. Rev., 168 113–145, DOI: 10.1007/s11214-011-9799-3, 2012.
  • [30]Lean, J.L., H.P. Warren, J.T. Mariska, and J. Bishop, A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather, J. Geophys. Res., 108 (A2), 1059, DOI: 10.1029/2001JA009238, 2003.
  • [31]Lei, J., J.P. Thayer, J.M. Forbes, E.K. Sutton, and R.S. Nerem, Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys. Res. Lett., 35, L10109, DOI: 10.1029/2008GL033875, 2008. [NASA ADS]
  • [32]Magdaleno, S., D. Altadill, M. Herraiz, E. Blanch, and B. de la Morena, Ionospheric peak height behaviour for low, middle and high latitudes, A potential empirical model for quiet conditions – Comparison with the IRI-2007 model, J. Atmos. Sol. Terr. Phys., 73 (13), 1810–1817, DOI: 10.1016/j.jastp.2011.04.019, 2011.
  • [33]Mayer, C., and N. Jakowski, Enhanced E layer ionization in the auroral zones observed by radio occultation measurements onboard CHAMP and Formosat-3/COSMIC, Ann. Geophys., 27, 1207–1212, 2009.
  • [34]C., Mayer, B. Belabbas, N. Jakowski, M. Meurer, and W. Dunkel, Ionosphere threat space model assessment for GBAS, Proc. ION GNSS 2009, Savannah, GA, USA, 22–25 September, 2009.
  • [35]Maunder, W.E., Magnetic disturbances, 1882 to 1903, as recorded at the Royal Observatory, Greenwich, and their association withsunspots, Mon. Not. R. Astron. Soc., 65 (1), 2–34, 1904.
  • [36]Mikhailov, A.V., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method’s performance at mid-latitudes daytime hours, J. Space Weather Space Clim., 2, A03, DOI: 10.1051/swsc/2012002, 2012.
  • [37]Mlynczak, M.G., F.J. Martin-Torres, C.J. Mertens, B.T. Marshall, R.E. Thompson, J.U. Kozyra, E.E. Remsberg, L.L. Gordley, J.M. Russel III, and T. Woods, Solar-terrestrial coupling evidenced by periodic behavior in geomagnetic indexes and the infrared energy budget of the thermosphere, Geophys. Res. Lett., 35, L05808, 2008.
  • [38]Mlynczak, M., L. Hunt, B.T. Marshall, F.J. Martin-Torres, C.J. Mertens, et al., Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument, J. Geophys. Res., 115, A03309, DOI: 10.1029/2009JA014713, 2010.
  • [39]Muhtarov, P., I. Kutiev, and L.R. Cander, Geomagnetically correlated autoregression model for short-term prediction of ionopsheric parameters, Inverse Prob., 18, 49–65, 2002.
  • [40]Mukhtarov, P., and D. Pancheva, Thermosphere-ionosphere coupling in response to recurrent geomagnetic activity, J. Atmos. Sol. Terr. Phys., 74, 132–145, DOI: 10.1016/j.jastp.2012.02.013, 2012.
  • [41]Mursula, K., and D. Martini, Centennial increase in geomagnetic activity: Latitudinal difference and global estimates, J. Geophys. Res., 111, A08209, DOI: 10.1029/2005JA011549, 2006.
  • [42]Pancheva, D., and P. Mukhtarov, Wavelet analysis on transient behaviour of tidal amplitude fluctuations observed by meteor radar in the lower thermosphere above Bulgaria, Ann. Geophys., 18, 316–333, 2000.
  • [43]Pancheva, D., N. Mitchell, R.R. Clark, J. Drobjeva, and J. Lastovicka, Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998–March 2000); influence from below and above, Ann. Geophys., 20, 1807–1819, 2002.
  • [44]Perrone, L., L. Alfonsi, V. Romano, and G. De Franceschi, Polar cap absorption events of Novembre 2001 at Terra Nova Bay, Antartica, Ann. Geophys., 22, 1633–1648, 2004.
  • [45]Perrone, L., M. Parisi, A. Meloni, M. Damasso, and M. Galliani, Study on solar sources and polar cap absorption events recorded in Antarctica, Adv. Space Res., 43 (11), 1660–1668, 2009.
  • [46]W.R., Piggot, and K. Rawer, URSI Handbook of Ionograms Interpretation and Reduction, 2nd edn. Report UAG-23A, WDC-A for STP, Boulder, Co, 1972.
  • [47]Qian, L., S.C. Solomon, R.G. Roble, and T.J. Kane, Model simulations of global change in the ionosphere, Geophys. Res. Lett., 35, L07811, DOI: 10.1029/2007GL033156, (2008).
  • [48]Qian, L., J. Lastovicka, R.G. Roble, and S.C. Solomon, Progress in observations and simulations of global change in the upper atmosphere, J. Geophys. Res., 116 (A4), A00H03, DOI: 10.1029/2010JA016317, 2011.
  • [49]Reinisch, B.W. and X. Huang, Automatic calculation of electron density profiles from digital ionoograms 3. Processing of bottomside ionograms, Radio Sci., 18 (3), 477–492, DOI: 10.1029/RS18i003p00477, 1983.
  • [50]Saiz, E., C. Cid, and Y. Cerrato, Forecasting intense geomagnetic activity using interplanetary magnetic field data, Ann. Geophys., 26, 3989–3998, 2008.
  • [51]Solomon, S.C., T.N. Woods, L.V. Didkovsky, J.T. Emmert, and L. Qian, Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum, Geophys. Res. Lett., 37, L16103, DOI: 10.1029/2010GL044468, 2010. [NASA ADS]
  • [52]Temmer, M., B. Vršnak, and A.M. Veronig, Periodic appearance of coronal holes and the related variation of solar wind parameters, Sol. Phys., 241, 371–383, DOI: 10.1007/s11207-007-0336-1, 2007. [NASA ADS]
  • [53]Thayer, J.P., J. Lei, J.M. Forbes, E.K. Sutton, and R.S. Nerem, Thermospheric density oscillations due to periodic solar wind high-speed streams, J. Geophys. Res., 113, A06307, DOI: 10.1029/2008JA013190, 2008. [NASA ADS]
  • [54]Torrence, C., and G. Compo, A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79, 61–78, 1998. [NASA ADS]
  • [55]Tsagouri, I., B. Zolesi, A. Belehaki, and L.R. Cander, Evaluation of the performance of the real-time updated simplified ionospheric regional model for the European area, J. Atmos. Sol.-Terr. Phys., 67 (12), 1137–1146, DOI: 10.1016/j.jastp.2005.01.012, 2005.
  • [56]Tsagouri, I., Evaluation of the performance of DIAS ionospheric forecasting models, J. Space Weather Space Space Clim., 1, A02, DOI: 10.1051/swsc/2011110003, 2011.
  • [57]Tsagouri, I., and A. Belehaki, “A new empirical model of middle latitude ionospheric response for space weather applications, Adv. Space Res., 37 (2), 420–425, 2006.
  • [58]Tsagouri, I., and A. Belehaki, An upgrade of the solar-wind-driven empirical model for the middle latitude ionospheric storm-time response, J. Atmos. Sol. Terr. Phys., 70 (16), 2061–2076, 2008.
  • [59]Tsagouri, I., B. Zolesi, R. Cander Lj, and A. Belehaki, DIAS effective sunspot number as an indicator of the ionospheric activity level over Europe, Acta Geophys., DOI: 10.2478/s11600-009-0045-2, 2009.
  • [60]Tsurutani, B., W. Gonzalez, A. Gonzalez, A.L.C. Gonzalez, F. Guarnieri, et al., Corotating solar wind streams and recurrent geomagnetic: a review, J. Geophys. Res., 111, A07S01, DOI: 10.1029/2005JA011273, 2006.
  • [61]Vršnak, B., M. Temmer, and A.M. Veroning, Coronal holes and solar with high-speed streams: I. Forecasting the solar wind parameters, Sol. Phys., 240, 315–330, 2007. [NASA ADS]
  • [62]Xie, H.N., N. Gopalswamy, P.K. Manoharan, A. Lara, S. Yashiro, and S. Lepri, Long-lived geomagnetic storms and corononal mass ejections, J. Geophys. Res, 111, A1, DOI: 10.10129/2005JA011287, 2006.
  • [63]Zolesi, B., A. Belehaki, I. Tsagouri, and L.R. Cander, Real-time updating of the simplified ionospheric regional model for operational applications, Radio Sci., 39, RS2011, DOI: 10.1029/2003RS002936, 2004.
  • [64]Zhang, J., I.G. Richardson, D.F. Webb, N. Gopalswamy, E. Huttunen, Correction to Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −1000 nT) during 1996–2005, J. Geophys. Res, 112, DOI: 10.10129/2007JA012891, 2007.
  文献评价指标  
  下载次数:59次 浏览次数:27次