期刊论文详细信息
Particle and Fibre Toxicology
Search for blood or water is influenced by Borrelia burgdorferi in Ixodes ricinus
Lise Gern1  Coralie Herrmann1 
[1] Institute of Biology, Eco-Epidemiology Laboratory, University of Neuchâtel, Emile-Argand 11, Neuchâtel, 2000, Switzerland
关键词: Borrelia burgdorferi;    Blood meal;    Water balance;    Vector manipulation;    Phenotypic traits modification;    Ixodes ticks;   
Others  :  1148050
DOI  :  10.1186/s13071-014-0526-2
 received in 2014-07-02, accepted in 2014-11-05,  发布年份 2015
PDF
【 摘 要 】

An increasing number of studies suggest that vector-borne parasites are able to alter phenotypic traits in their arthropod vectors so that microorganism transmission is enhanced. This review documents this phenomenon, which occurs between Borrelia burgdorferi bacteria, the causative agents of Lyme borreliosis, and their tick vectors belonging to the Ixodes ricinus complex. It also reviews the influence of other tick-borne pathogens on these ticks. Ticks belonging to the Ixodes ricinus complex benefit from Borrelia infection by an increased lifespan (more fat and more resistance to desiccation) and by an increased questing period (less need to move to the litter zone to rehydrate), which enhances tick chances to find a host and to subsequently transmit the pathogens.

【 授权许可】

   
2014 Herrmann and Gern; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150404081557232.pdf 715KB PDF download
Figure 2. 27KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Moore J. Parasites and the Behaviour of Animals. Oxford University Press, New York; 2002.
  • [2]Poulin R. Parasite manipulation of host behavior: an update and frequently asked questions. In: Advances in the Study of Behavior. Brockmann HJ, editor. Academic Press, Burlington; 2010: p.151-186.
  • [3]Moore J. Parasites and the behavior of biting flies. J Parasitol. 1993; 79:1-16.
  • [4]Hurd H. Manipulation of medically important insect vectors by their parasites. Annu Rev Entomol. 2003; 48:141-161.
  • [5]Lefèvre T, Thomas F. Behind the scene, something else is pulling the strings: emphasizing parasitic manipulation in vector-borne diseases. Infect Genet Evol. 2008; 8:504-519.
  • [6]Gern L: Life cycle of Borrelia burgdorferi sensu lato and transmission to humans. In Lyme Borreliosis. Edited by Lipsker D, Jaulhac B. Basel: Karger; 2009:18–30.
  • [7]Kahl O, Janetzi-Mittmann C, Gray JS, Jonas R, Stein J, De Boer R. Risk of infection with Borrelia burgdorferi sensu lato for a host in relation to the duration of nymphal Ixodes ricinus feeding and the method of tick removal. Zbl Bakt. 1998; 287:41-52.
  • [8]Crippa M, Rais O, Gern L. Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector-Borne Zoonot Dis. 2002; 2:3-9.
  • [9]Anderson JF. Epizootiology of Lyme borreliosis. Scand J Infect Dis. 1991; 23:23-34.
  • [10]Lees AD, Milne A. The seasonal and diurnal activities of individual sheep ticks (Ixodes ricinus L.). Parasitology. 1951; 41:189-208.
  • [11]Lees AD. Water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology. 1946; 37:1-20.
  • [12]Knülle W, Rudolph D. Humidity relationships and water balance of ticks. In: Physiology of Ticks. Obenchain FD, Galun R, editors. Pergamon Press, Oxford; 1982: p.43-70.
  • [13]Rudolph D, Knülle W. Mechanisms contributing to water balance in non-feeding ticks and their ecological implications. In: Recent Advances in Acarology. Rodriguez JG, editor. Academic Press, New York; 1979: p.375-383.
  • [14]Pugh PJ, King PE, Fordy MR. The spiracle of Ixodes ricinus (L.) (Ixodidae: Metastigmata: Acarina): a passive diffusion barrier for water vapour. Zool J Linn Soc. 1988; 93:113-131.
  • [15]Lighton JRB, Fielden LJ, Rechav Y. Discontinuous ventilation in a non-insect, the tick Amblyomma marmoreum (Acari: Ixodidae): characterization and metabolic modulation. J Exp Biol. 1993; 180:229-245.
  • [16]Kahl O, Alidousti I. Bodies of liquid water as a source of water gain for Ixodes ricinus ticks (Acari: Ixodidae). Exp Appl Acarol. 1997; 21:731-746.
  • [17]Kröber T, Guerin PM. Ixodid ticks avoid contact with liquid water. J Exp Biol. 1999; 202:1877-1883.
  • [18]Lees AD. The sensory physiology of the sheep tick, Ixodes ricinus. J Exp Biol. 1948; 25:145-207.
  • [19]Needham GR, Teel PD. Off-host physiological ecology of ixodid ticks. Annu Rev Entomol. 1991; 36:659-681.
  • [20]Crooks E, Randolph SE. Walking by Ixodes ricinus ticks: intrinsic and extrinsic factors determine the attraction of moisture or host odour. J Exp Biol. 2006; 209:2138-2142.
  • [21]Perret JL, Guerin PM, Diehl PA, Vlimant M, Gern L. Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus. J Exp Biol. 2003; 206:1809-1815.
  • [22]Carroll JF, Mills GD, Schmidtmann ET. Patterns of activity in host-seeking adult Ixodes scapularis (Acari: Ixodidae) and host-produced kairomones. J Med Entomol. 1998; 35:11-15.
  • [23]Dusbabek F, Daniel M, Cerny V. Stratification of engorged Ixodes ricinus larvae overwintering in soil. Folia Parasit. 1971; 18:261-266.
  • [24]Daniel M, Cerny V, Dusbabek F. Overwintering of the tick Ixodes ricinus (L.) under conditions of a field experiment. Folia Parasit. 1972; 19:305-314.
  • [25]Gray JS. The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev Med Vet Entomol. 1991; 79:323-333.
  • [26]Dautel H, Dippel C, Kämmer D, Werkhausen A, Kahl O. Winter activity of Ixodes ricinus in a Berlin forest. Int J Med Microbiol. 2008; 298:50-54.
  • [27]Gray JS. Ixodes ricinus seasonal activity: implications of global warming indicated by revisiting tick and weather data. Int J Med Microbiol. 2008; 298:19-24.
  • [28]MacLeod J. Ixodes ricinus in relation to its physical environment. II. The factors governing survival and activity. Parasitology. 1935; 27:123-144.
  • [29]Perret JL, Guigoz E, Rais O, Gern L. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol Res. 2000; 86:554-557.
  • [30]Randolph SE, Green RM, Hoodless AN, Peacey MF. An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol. 2002; 32:979-989.
  • [31]Perret JL, Rais O, Gern L. Influence of climate on the proportion of Ixodes ricinus nymphs and adults questing in a tick population. J Med Entomol. 2004; 41:361-365.
  • [32]Randolph SE, Storey K. Impact of microclimate on immature tick-rodent interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol. 1999; 36:741-748.
  • [33]Burri C, Morán Cadenas F, Douet V, Moret J, Gern L. Ixodes ricinus density and infection prevalence with Borrelia burgdorferi sensu lato along a north-facing altitudinal gradient in the Rhône Valley (Switzerland). Vector-Borne Zoonot Dis. 2007; 7:50-58.
  • [34]Morán Cadenas F, Rais O, Jouda F, Douet V, Humair PF, Moret J, Gern L. Phenology of Ixodes ricinus and infection with Borrelia burgdorferi sensu lato along a North- and South-facing altitudinal gradient on Chaumont Mountain, Switzerland. J Med Entomol. 2007; 44:683-693.
  • [35]Gern L, Morán Cadenas F, Burri C. Influence of some climatic factors on Ixodes ricinus ticks studied along altitudinal gradients in two geographic regions in Switzerland. Int J Med Microbiol. 2008; 298:55-59.
  • [36]Lindgren E, Tälleklint L, Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Persp. 2000; 108:119-123.
  • [37]Jaenson TGT, Jaenson DGE, Eisen L, Petersson E, Lindgren E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit Vectors. 2012; 5:8. BioMed Central Full Text
  • [38]Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen AB, Nygard K, Brun E, Ottesen P, Saevik BK, Ytrehus B. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit Vectors. 2011; 4:84. BioMed Central Full Text
  • [39]Daniel M, Danielova V, Kriz B, Jirsa A, Nozicka J. Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in central Europe. Eur J Clin Microbiol Infect Dis. 2003; 22:327-328.
  • [40]Materna J, Daniel M, Danielova V. Altitudinal distribution limit of the tick Ixodes ricinus shifted considerably towards higher altitudes in central Europe: results of three years monitoring in the Krkonose Mts (Czech Republic). Cent Eur J Public Health. 2005; 13:24-28.
  • [41]Materna J, Daniel M, Metelka L, Harcarik J. The vertical distribution, density and the development of the tick Ixodes ricinus in mountain areas influenced by climate changes (The Krkonose Mts., Czech Republic). Int J Med Microbiol. 2008; 298:25-37.
  • [42]Jaenson TGT, Lindgren E. The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tick Borne Dis. 2011; 2:44-49.
  • [43]Danielova V, Rudenko N, Daniel M, Holubova J, Materna J, Golovchenko M, Schwarzova L. Extension of Ixodes ricinus ticks and agents of tick-borne diseases to mountain areas in the Czech Republic. Int J Med Microbiol. 2006; 296:48-53.
  • [44]Lehane MJ. Managing the blood meal. In: Biology of Blood-Sucking Insects. 2nd ed. Cambridge University Press, New York; 1991: p.84-115.
  • [45]Tarnowski B, Coons LB. Ultrastructure of the midgut and blood meal digestion in the adult tick Dermacentor variabilis. Exp Appl Acarol. 1989; 6:263-289.
  • [46]Umemiya-Shirafuji R, Matsuo T, Liao M, Boldbaatar D, Battur B, Suzuki H, Fujisaki K. Increased expression of ATG genes during nonfeeding periods in the tick Haemaphysalis longicornis. Autophagy. 2010; 6:473-481.
  • [47]Sonenshine DE. Biology of Ticks. Oxford University Press, New York; 1991.
  • [48]Steele GM, Randolph SE. An experimental evaluation of conventional control measures against the sheep tick, Ixodes ricinus (L.) (Acari: Ixodidae). I. A unimodal seasonal activity pattern. B Entomol Res. 1985; 75:489-499.
  • [49]Van Es RP, Hillerton JE, Gettinby G. Lipid consumption in Ixodes ricinus (Acari: Ixodidae): temperature and potential longevity. B Entomol Res. 1998; 88:567-573.
  • [50]Alekseev AN. Tick pathogen interactions: behavior of infected and uninfected ticks (Ixodidae). In: Acarology. Mitchell R, Horn DJ, Needham GR, Welbourn WC, editors. Biological Survey, Columbus; 1996: p.113-115.
  • [51]Lefcort H, Durden LA. The effect of infection with Lyme disease spirochetes (Borrelia burgdorferi) on the phototaxis, activity, and questing height of the tick vector Ixodes scapularis. Parasitology. 1996; 113:97-103.
  • [52]Romashchenko AV, Ratushnyak AS, Zapara TA, Tkachev SE, Moshkin MP. The correlation between tick (Ixodes persulcatus Sch.) questing behaviour and synganglion neuronal responses to odours. J Insect Physiol. 2012; 58:903-910.
  • [53]Herrmann C, Gern L. Do level of energy reserves, hydration status and Borrelia infection influence walking by Ixodes ricinus (Acari: Ixodidae) ticks? Parasitology. 2012; 139:330-337.
  • [54]Herrmann C, Gern L. Survival of Ixodes ricinus (Acari: Ixodidae) nymphs under cold conditions is negatively influenced by frequent temperature variations. Ticks Tick Borne Dis. 2013; 4:445-451.
  • [55]Neelakanta G, Sultana H, Fish D, Anderson JF, Fikrig E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J Clin Invest. 2010; 120:3179-3190.
  • [56]Herrmann C, Gern L. Survival of Ixodes ricinus (Acari: Ixodidae) under challenging conditions of temperature and humidity is influenced by Borrelia burgdorferi sensu lato infection. J Med Entomol. 2010; 47:1196-1204.
  • [57]Burgdorfer W, Hayes SF, Corwin D. Pathophysiology of the Lyme disease spirochete, Borrelia burgdorferi, in Ixodid ticks. Rev Infect Dis. 1989; 11:1142-1450.
  • [58]Lebet N, Gern L. Histological examination of Borrelia burgdorferi infections in unfed Ixodes ricinus nymphs. Exp Appl Acarol. 1994; 18:177-183.
  • [59]Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, Anguita J, Norgard MV, Kantor FS, Anderson JF, Koski RA, Fikrig E. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005; 436:573-577.
  • [60]Ojaimi C, Brooks C, Casjens S, Rosa P, Elias A, Barbour A, Jasinskas A, Benach J, Katona L, Radolf J, Casimano M, Skare J, Swingle K, Atkins D, Schwartz I. Profiling of temperature-induced changes in Borrelia burgdorferi gene expression by using whole genome arrays. Inf Immun. 2003; 71:1689-1705.
  • [61]Herrmann C, Voordouw MJ, Gern L. Ixodes ricinus ticks infected with causative agent of Lyme disease, Borrelia burgdorferi sensu lato, have higher energy reserves. Int J Parasitol. 2013; 43:477-483.
  • [62]Randolph SE. The effect of Babesia microti on feeding and survival in its tick vector, Ixodes trianguliceps. Parasitology. 1991; 102:9-16.
  • [63]Hu R, Hyland KE, Markowski D. Effects of Babesia microti infection on feeding pattern, engorged body weight, and molting rate of immature Ixodes scapularis (Acari: Ixodidae). J Med Entomol. 1997; 34:559-564.
  • [64]Norte AC, Lobato DC, Braga E, Antonelli Y, Lacorte G, Félix GM, Gonçalves M, Lopes de Carvalho I, Gern L, Núncio MS, Ramos JA, Lopes De Carvalho I, Gern L, Núncio MS, Ramos JA. Do ticks and Borrelia burgdorferi s.l. constitute a burden to birds? Parasitol Res. 2013; 112:1903-1912.
  • [65]Kume A, Baldbaatar D, Takazawa Y, Umemiya-Shirafuji R, Tanaka T, Fujisaki K. RNAi of the translation inhibition gene 4E-BP identified from the hard tick, Haemaphysalis longicornis, affects lipid storage during the off-host starvation period of ticks. Parasitol Res. 2012; 111:889-896.
  • [66]Alekseev AN, Dubinina HV. Abiotic parameters and diel seasonal activity of Borrelia-infected and uninfected Ixodes persulcatus (Acarina: Ixodidae). J Med Entomol. 2000; 37:9-15.
  • [67]Naumov RL. Longevity of forest and taiga ticks (Ixodidae) infected and non-infected with Borrelia burgdorferi groups. Parazitologiya. 2003; 37:527-532.
  • [68]Faulde MK, Robbins RG. Tick infestation and Borrelia burgdorferi s.l. infection-induced increase in host-finding efficacy of female Ixodes ricinus under natural conditions. Exp Appl Acarol. 2008; 44:137-145.
  • [69]Hubalek Z. Epidemiology of Lyme borreliosis. In: Lyme Borreliosis. Lipsker D, Jaulhac B, editors. Karger, Basel; 2009: p.31-50.
  • [70]Matuschka FR, Fischer P, Musgrave K, Richter D, Spielman A. Hosts on which nymphal Ixodes ricinus most abundantly feed. Am J Trop Med Hyg. 1991; 44:100-107.
  • [71]Humair PF, Gern L. Relationship between Borrelia burgdorferi sensu lato species, red squirrels (Sciurus vulgaris) and Ixodes ricinus in enzootic areas in Switzerland. Acta Trop. 1998; 69:213-227.
  • [72]Humair PF, Rais O, Gern L. Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus: differential transmission pattern and overwintering maintenance. Parasitology. 1999; 118:33-42.
  • [73]Hanincova K, Schäfer SM, Etti S, Sewell HS, Taragelova V, Ziak D, Labuda M, Kurtenbach K. Association of Borrelia afzelii with rodents in Europe. Parasitology. 2003; 126:11-20.
  • [74]Morán Cadenas F, Rais O, Humair PF, Douet V, Moret J, Gern L. Identification of host bloodmeal source and Borrelia burgdorferi sensu lato in field-collected Ixodes ricinus ticks in Chaumont (Switzerland). J Med Entomol. 2007; 44:1109-1117.
  • [75]Jaenson TGT, Tälleklint L. Incompetence of roe deer as reservoirs of the Lyme disease spirochete. J Med Entomol. 1992; 29:813-817.
  • [76]Mejlon HA, Jaenson TGT. Questing behaviour of Ixodes ricinus ticks (Acari: Ixodidae). Exp Appl Acarol. 1997; 21:747-754.
  • [77]Gigon F: Biologie d’Ixodes ricinus L. sur le Plateau Suisse – une contribution à l’écologie de ce vecteur, PhD thesis. University of Neuchâtel, Biology Department; 1985. http://doc.rero.ch/search?ln=fr&sc=1&p=Gigon&action_search=
  • [78]Belozerov VN. Diapause and biological rythms in ticks. In: Physiology of Ticks. Obenchain FD, Galun R, editors. Pergamon Press, Oxford; 1982: p.469-500.
  • [79]Alekseev AN, Dubinina HV. Symbiotic relationships in the complex carrier-pathogen system. Dokl Akad Nauk. 1994; 338:259-261.
  • [80]Naumov RL. The exploratory activity of the Borrelia-infected taiga tick Ixodes persulcatus. Parazitologiya. 1999; 33:251-256.
  • [81]Alekseev AN, Jensen PM, Dubinina HV, Smirnova LA, Makrouchina NA, Zharkov SD. Peculiarities of behaviour of taiga (Ixodes persulcatus) and sheep (Ixodes ricinus) ticks (Acarina: Ixodidae) determined by different methods. Folia Parasit. 2000; 47:147-153.
  • [82]Belova OA, Burenkova LA, Karganova GG. Different tick-borne encephalitis virus (TBEV) prevalences in unfed versus partially engorged ixodid ticks - evidence of virus replication and changes in tick behavior. Ticks Tick Borne Dis. 2012; 3:240-246.
  文献评价指标  
  下载次数:0次 浏览次数:8次