期刊论文详细信息
Reproductive Biology and Endocrinology
International regulatory landscape and integration of corrective genome editing into in vitro fertilization
Tetsuya Ishii1  Motoko Araki1 
[1] Office of Health and Safety, Hokkaido University, Sapporo 060-0808, Japan
关键词: Regulations;    Germline gene modification;    Prevention;    Genetic disease;    In vitro fertilization;    Assisted reproductive technology;    Embryo;    Zygote;    Embryonic stem cells;    CRISPR/Cas;    TALEN;    ZFN;    Genome editing;   
Others  :  1139730
DOI  :  10.1186/1477-7827-12-108
 received in 2014-08-15, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Genome editing technology, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas, has enabled far more efficient genetic engineering even in non-human primates. This biotechnology is more likely to develop into medicine for preventing a genetic disease if corrective genome editing is integrated into assisted reproductive technology, represented by in vitro fertilization. Although rapid advances in genome editing are expected to make germline gene correction feasible in a clinical setting, there are many issues that still need to be addressed before this could occur. We herein examine current status of genome editing in mammalian embryonic stem cells and zygotes and discuss potential issues in the international regulatory landscape regarding human germline gene modification. Moreover, we address some ethical and social issues that would be raised when each country considers whether genome editing-mediated germline gene correction for preventive medicine should be permitted.

【 授权许可】

   
2014 Araki and Ishii; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150322094941943.pdf 1383KB PDF download
Figure 3. 91KB Image download
Figure 2. 120KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Billings PR, Hubbard R, Newman SA: Human germline gene modification: a dissent. Lancet 1999, 353(9167):1873-1875.
  • [2]Frankel MS, Chapman AR: Human Inheritable Genetic Modifications. Assessing Scientific, Ethical, Religious and Policy Issues. American Association for the Advancement of Sciences 2000. Search the article by entering the article title at http://shr.aaas.org/projects/human_enhance/reports/germline.pdf webcite
  • [3]Davis BD: Germ-line therapy: evolutionary and moral considerations. Hum Gene Ther 1992, 3(4):361-363.
  • [4]Neel JV: Germ-line gene therapy: another view. Hum Gene Ther 1993, 4(2):127-128.
  • [5]Glover J: What Sort of People Should There Be?. London: Penguin Books; 1984:45-47.
  • [6]Lewis CS: The Abolition of Man. New York: Macmillan; 1965:69-71.
  • [7]Ramsey P: Fabricated Man: The Ethics of Genetic Control. New Haven: Yale University Press; 1970.
  • [8]Sandel M: The case against perfection. Atl Mon 2004, 293:51-62.
  • [9]Ishii T: Potential impact of human mitochondrial replacement on global policy regarding germline gene modification. Reprod Biomed Online 2014, 29(2):150-155.
  • [10]Cohen J, Scott R, Schimmel T, Levron J, Willadsen S: Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 1997, 350(9072):186-187.
  • [11]Brenner CA, Barritt JA, Willadsen S, Cohen J: Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil Steril 2000, 74(3):573-578.
  • [12]Barritt JA, Brenner CA, Malter HE, Cohen J: Mitochondria in human offspring derived from ooplasmic transplantation. Hum Reprod 2001, 16(3):513-516.
  • [13]FDA: Biological Response Modifiers Advisory Committee. Ooplasm transfer as method to treat female infertility. May 9 2002. http://www.fda.gov/ohrms/dockets/ac/cber02.htm#Biological%20Response%20Modifiers webcite
  • [14]Craven L, Tuppen HA, Greggains GD, Harbottle SJ, Murphy JL, Cree LM, Murdoch AP, Chinnery PF, Taylor RW, Lightowlers RN, Herbert M, Turnbull DM: Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature 2010, 465(7294):82-85.
  • [15]Paull D, Emmanuele V, Weiss KA, Treff N, Stewart L, Hua H, Zimmer M, Kahler DJ, Goland RS, Noggle SA, Prosser R, Hirano M, Sauer MV, Egli D: Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature 2013, 493(7434):632-637.
  • [16]Tachibana M, Amato P, Sparman M, Woodward J, Sanchis DM, Ma H, Gutierrez NM, Tippner-Hedges R, Kang E, Lee HS, Ramsey C, Masterson K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer R, Mitalipov S: Towards germline gene therapy of inherited mitochondrial diseases. Nature 2013, 493(7434):627-631.
  • [17]FDA: Meeting Materials, Cellular, Tissue and Gene Therapies Advisory Committee. 2014. http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/BloodVaccinesandOtherBiologics/CellularTissueandGeneTherapiesAdvisoryCommittee/ucm380047.htm webcite
  • [18]DH: Mitochondrial Donation. A Consultation Draft Regulations to Permit the Use of New Treatment Techniques to Prevent the Transmission of a Serious Mitochondrial Disease from Mother to Child 2014. https://www.gov.uk/government/consultations/serious-mitochondrial-disease-new-techniques-to-prevent-transmission webcite
  • [19]DH: Mitochondrial donation plans progress following consultation. 2014. https://www.gov.uk/government/news/mitochondrial-donation-plans-progress-following-consultation webcite
  • [20]Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD: Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010, 11(9):636-646.
  • [21]Gaj T, Gersbach CA, Barbas CF 3rd: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013, 31(7):397-405.
  • [22]Joung JK, Sander JD: TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013, 14(1):49-55.
  • [23]Sander JD, Joung JK: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014, 32(4):347-355.
  • [24]Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014, 370(10):901-910.
  • [25]Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC: Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005, 435(7042):646-651.
  • [26]Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, Malani N, Anguela XM, Sharma R, Ivanciu L, Murphy SL, Finn JD, Khazi FR, Zhou S, Paschon DE, Rebar EJ, Bushman FD, Gregory PD, Holmes MC, High KA: In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 2011, 475(7355):217-221.
  • [27]Zou J, Mali P, Huang X, Dowey SN, Cheng L: Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 2011, 118(17):4599-4608.
  • [28]Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LF, Artandi SE, Wernig M, Joung JK: In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 2011, 29(11):1717-1726.
  • [29]Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordonez A, Hannan NR, Rouhani FJ, Darche S, Alexander G, Marciniak SJ, Fusaki N, Hasegawa M, Holmes MC, Di Santo JP, Lomas DA, Bradley A, Vallier L: Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 2011, 478(7369):391-394.
  • [30]Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R: Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 2011, 146(2):318-331.
  • [31]Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EE, Beekman JM, Clevers H: Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013, 13(6):653-658.
  • [32]Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT: Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 2013, 19(9):1111-1113.
  • [33]Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J: Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014, 156(4):836-843.
  • [34]Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, Liu X, Zhao E, Wang C, Lin S, Jing B, Si C, Lin Q, Chen X, Lin H, Pu X, Wang Y, Qin B, Wang F, Wang H, Si W, Zhou J, Tan T, Li T, Ji S, Xue Z, Luo Y, Cheng L, Zhou Q, Li S: TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 2014, 14(3):323-328.
  • [35]Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J: Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 2013, 13(6):659-662.
  • [36]Lokody I: Genetic therapies: Correcting genetic defects with CRISPRCas9. Nat Rev Genet 2013, 15:63-63.
  • [37]Pollack A: A Powerful New Way to Edit DNA. The New York Times 2014.
  • [38]Cathomen T, Ehl S: Translating the genomic revolution - targeted genome editing in primates. N Engl J Med 2014, 370(24):2342-2345.
  • [39]Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L, Gregory PD, Anegon I, Cost GJ: Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 2011, 29(8):695-696.
  • [40]Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R: One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 2013, 154(6):1370-1379.
  • [41]Li W, Teng F, Li T, Zhou Q: Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 2013, 31(8):684-686.
  • [42]Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154(6):1380-1389.
  • [43]Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013, 153(4):910-918.
  • [44]Li F, Cowley DO, Banner D, Holle E, Zhang L, Su L: Efficient genetic manipulation of the NOD-Rag1-/-IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology. Sci Rep 2014, 4:5290.
  • [45]Yasue A, Mitsui SN, Watanabe T, Sakuma T, Oyadomari S, Yamamoto T, Noji S, Mito T, Tanaka E: Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems. Sci Rep 2014, 4:5705.
  • [46]Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC: Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 2012, 109(43):17382-17387.
  • [47]Liu Z, Zhou X, Zhu Y, Chen ZF, Yu B, Wang Y, Zhang CC, Nie YH, Sang X, Cai YJ, Zhang YF, Zhang C, Zhou WH, Sun Q, Qiu Z: Generation of a monkey with MECP2 mutations by TALEN-based gene targeting. Neurosci Bull 2014, 30(3):381-386.
  • [48]Mashimo T, Kaneko T, Sakuma T, Kobayashi J, Kunihiro Y, Voigt B, Yamamoto T, Serikawa T: Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotes. Sci Rep 2013, 3:1253.
  • [49]Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L: Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007, 25(11):1298-1306.
  • [50]Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R: Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 2009, 27(9):851-857.
  • [51]Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R: Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011, 29(8):731-734.
  • [52]Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L: Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 2009, 5(1):97-110.
  • [53]Li W, Li X, Li T, Jiang MG, Wan H, Luo GZ, Feng C, Cui X, Teng F, Yuan Y, Zhou Q, Gu Q, Shuai L, Sha J, Xiao Y, Wang L, Liu Z, Wang XJ, Zhao XY, Zhou Q: Genetic modification and screening in rat using haploid embryonic stem cells. Cell Stem Cell 2014, 14(3):404-414.
  • [54]Glass B: Science: endless horizons or golden age? Science 1971, 171(3966):23-29.
  • [55]WHO: Congenital anomalies. Fact sheet No 370. 2014. http://www.who.int/mediacentre/factsheets/fs370/en/ webcite
  • [56]Neocleous V, Yiallouros PK, Tanteles GA, Costi C, Moutafi M: Apparent Homozygosity of p.Phe508del in CFTR due to a Large Gene Deletion of Exons 4–11. Case Rep Genet 2014, 2014:613863.
  • [57]Groselj U, Tansek MZ, Kovac J, Hovnik T, Podkrajsek KT, Battelino T: Five novel mutations and two large deletions in a population analysis of the phenylalanine hydroxylase gene. Mol Genet Metab 2012, 106(2):142-148.
  • [58]Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, Almqvist EW, Turner D, Bachoud-Levi AC, Simpson SA, Delatycki M, Maglione V, Hayden MR, Donato SD: Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain 2003, 126(Pt 4):946-955.
  • [59]Cruz-Correa M, Diaz-Algorri Y, Mendez V, Vazquez PJ, Lozada ME, Freyre K, Lathroum L, Gonzalez-Pons M, Hernandez-Marrero J, Giardiello F, Rodriguez-Quilichini S: Clinical characterization and mutation spectrum in Hispanic families with adenomatous polyposis syndromes. Familial Cancer 2013, 12(3):555-562.
  • [60]Stern HJ: Preimplantation Genetic Diagnosis: Prenatal Testing for Embryos Finally Achieving Its Potential. J Clin Med 2014, 3(1):280-309.
  • [61]Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H: Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 2011, 108(29):12013-12017.
  • [62]Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, Kang E, Fulati A, Lee HS, Sritanaudomchai H, Masterson K, Larson J, Eaton D, Sadler-Fredd K, Battaglia D, Lee D, Wu D, Jensen J, Patton P, Gokhale S, Stouffer RL, Wolf D, Mitalipov S: Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 2013, 153(6):1228-1238.
  • [63]Chung YG, Eum JH, Lee JE, Shim SH, Sepilian V, Hong SW, Lee Y, Treff NR, Choi YH, Kimbrel EA, Dittman RE, Lanza R, Lee DR: Human somatic cell nuclear transfer using adult cells. Cell Stem Cell 2014, 14(6):777-780.
  • [64]Yamada M, Johannesson B, Sagi I, Burnett LC, Kort DH, Prosser RW, Paull D, Nestor MW, Freeby M, Greenberg E, Goland RS, Leibel RL, Solomon SL, Benvenisty N, Sauer MV, Egli D: Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 2014, 510(7506):533-536.
  • [65]Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF: Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011, 8(1):106-118.
  • [66]Taapken SM, Nisler BS, Newton MA, Sampsell-Barron TL, Leonhard KA, McIntire EM, Montgomery KD: Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol 2011, 29(4):313-314.
  • [67]Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, Baker J, Baker D, Munoz MB, Beil S, Benvenisty N, Ben-Yosef D, Biancotti JC, Bosman A, Brena RM, Brison D, Caisander G, Camarasa MV, Chen J, Chiao E, Choi YM, Choo AB, Collins D, Colman A, Crook JM, Daley GQ, Dalton A, De Sousa PA, Denning C, Downie J, et al.: Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 2011, 29(12):1132-1144.
  • [68]Van Haute L, Spits C, Geens M, Seneca S, Sermon K: Human embryonic stem cells commonly display large mitochondrial DNA deletions. Nat Biotechnol 2013, 31(1):20-23.
  • [69]Benn P: Non-Invasive Prenatal Testing Using Cell Free DNA in Maternal Plasma: Recent Developments and Future Prospects. J Clin Med 2014, 3(1):537-565.
  • [70]Bielanska M, Tan SL, Ao A: Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod 2002, 17(2):413-419.
  • [71]Bielanska M, Tan SL, Ao A: High rate of mixoploidy among human blastocysts cultured in vitro. Fertil Steril 2002, 78(6):1248-1253.
  • [72]Van Echten-Arends J, Mastenbroek S, Sikkema-Raddatz B, Korevaar JC, Heineman MJ, van der Veen F, Repping S: Chromosomal mosaicism in human preimplantation embryos: a systematic review. Hum Reprod Update 2011, 17(5):620-627.
  • [73]Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR: Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril 2013, 100(3):624-630.
  • [74]Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF 3rd: Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 2012, 9(8):805-807.
  • [75]van der Gaast MH, Eijkemans MJ, van der Net JB, De Boer EJ, Burger CW, Van Leeuwen FE, Fauser BC, Macklon NS: Optimum number of oocytes for a successful first IVF treatment cycle. Reprod Biomed Online 2006, 13(4):476-480.
  • [76]Sunkara SK, Rittenberg V, Raine-Fenning N, Bhattacharya S, Zamora J, Coomarasamy A: Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod 2011, 26(7):1768-1774.
  • [77]Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014, 32(3):279-284.
  • [78]Guilinger JP, Thompson DB, Liu DR: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 2014, 32(6):577-582.
  • [79]Ishii T, Pera RA, Greely HT: Ethical and legal issues arising in research on inducing human germ cells from pluripotent stem cells. Cell Stem Cell 2013, 13(2):145-148.
  • [80]Wong CC, Johnson MH: Therapy for mitochondrial genetic disease: are we at the thin end of the wedge? Reprod Biomed Online 2014, 29(2):147-149.
  • [81]Araki M, Nojima K, Ishii T: Caution required for handling genome editing technology. Trends Biotechnol 2014, 32(5):234-237.
  • [82]Orvieto R: Ovarian hyperstimulation syndrome- an optimal solution for an unresolved enigma. J Ovarian Res 2013, 6(1):77.
  • [83]HFEA: HFEA Statement Regarding the Klaus Reinhardt et al. Science Paper ‘Mitochondrial Replacement, Evolution, and the Clinic’. 2013. http://www.hfea.gov.uk/8178.html webcite
  • [84]Jain T, Hornstein MD: Disparities in access to infertility services in a state with mandated insurance coverage. Fertil Steril 2005, 84(1):221-223.
  • [85]Nachtigall RD: International disparities in access to infertility services. Fertil Steril 2006, 85(4):871-875.
  文献评价指标  
  下载次数:30次 浏览次数:22次