Retrovirology | |
Dual-acting stapled peptides target both HIV-1 entry and assembly | |
Asim K Debnath5  Eric O Freed1  Michael F Summers4  Alan Cooper3  Shawn Lee2  Xiaohe Tong2  Daniel Scacalossi5  Pallavi Bhargava4  Mansi Mehta4  Peter Y Mercredi4  Abdul A Waheed1  Francesca Curreli5  Hongtao Zhang5  | |
[1] Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA;CPC Scientific, Inc., 1245 Reamwood Ave., Sunnyvale, CA 94089, USA;School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK;Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA;Laboratory of Molecular Modeling, Drug Design, Lindsley F. Kimball Research Institute of the New York Blood Center, 310 E 67th Street, New York, NY 10065, USA | |
关键词: Drug-resistance; ITC; SPR; NMR; Stapled peptides; Virus entry; Virus assembly; Capsid; HIV-1; | |
Others : 806334 DOI : 10.1186/1742-4690-10-136 |
|
received in 2013-08-12, accepted in 2013-11-03, 发布年份 2013 | |
【 摘 要 】
Background
Previously, we reported the conversion of the 12-mer linear and cell-impermeable peptide CAI to a cell-penetrating peptide NYAD-1 by using an i,i + 4 hydrocarbon stapling technique and confirmed its binding to the C-terminal domain (CTD) of the HIV-1 capsid (CA) protein with an improved affinity (Kd ~ 1 μM) compared to CAI (Kd ~ 15 μM). NYAD-1 disrupts the formation of both immature- and mature-like virus particles in in vitro and cell-based assembly assays. In addition, it displays potent anti-HIV-1 activity in cell culture against a range of laboratory-adapted and primary HIV-1 isolates.
Results
In this report, we expanded the study to i,i + 7 hydrocarbon-stapled peptides to delineate their mechanism of action and antiviral activity. We identified three potent inhibitors, NYAD-36, -66 and -67, which showed strong binding to CA in NMR and isothermal titration calorimetry (ITC) studies and disrupted the formation of mature-like particles. They showed typical α-helical structures and penetrated cells; however, the cell penetration was not as efficient as observed with the i,i + 4 peptides. Unlike NYAD-1, the i,i + 7 peptides did not have any effect on virus release; however, they impaired Gag precursor processing. HIV-1 particles produced in the presence of these peptides displayed impaired infectivity. Consistent with an effect on virus entry, selection for viral resistance led to the emergence of two mutations in the gp120 subunit of the viral envelope (Env) glycoprotein, V120Q and A327P, located in the conserved region 1 (C1) and the base of the V3 loop, respectively.
Conclusion
The i,i + 7 stapled peptides derived from CAI unexpectedly target both CA and the V3 loop of gp120. This dual-targeted activity is dependent on their ability to penetrate cells as well as their net charge. This mechanistic revelation will be useful in further modifying these peptides as potent anti-HIV-1 agents.
【 授权许可】
2013 Zhang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708092423431.pdf | 3006KB | download | |
Figure 14. | 33KB | Image | download |
Figure 13. | 36KB | Image | download |
Figure 12. | 45KB | Image | download |
Figure 11. | 66KB | Image | download |
Figure 10. | 44KB | Image | download |
Figure 9. | 38KB | Image | download |
Figure 8. | 40KB | Image | download |
Figure 7. | 34KB | Image | download |
Figure 6. | 59KB | Image | download |
Figure 5. | 48KB | Image | download |
Figure 4. | 26KB | Image | download |
Figure 3. | 78KB | Image | download |
Figure 2. | 43KB | Image | download |
Figure 1. | 42KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
【 参考文献 】
- [1]Hardy H, Skolnik PR: Enfuvirtide, a new fusion inhibitor for therapy of human immunodeficiency virus infection. Pharmacotherapy 2004, 24:198-211.
- [2]Lazzarin A: Enfuvirtide: the first HIV fusion inhibitor. Expert Opin Pharmacother 2005, 6:453-464.
- [3]Sax PE: FDA approval: maraviroc. AIDS Clin Care 2007, 19:75.
- [4]Zollner B, Feucht HH, Weitner L, Adam A, Laufs R: Drug-resistant genotyping in HIV-1 therapy. Lancet 1999, 354:1120-1121.
- [5]Wensing AM, Boucher CA: Worldwide transmission of drug-resistant HIV. AIDS Rev 2003, 5:140-155.
- [6]Luo M, Liu H, Zhuang K, Liu L, Su B, Yang R, et al.: Prevalence of drug-resistant HIV-1 in rural areas of Hubei province in the People's Republic of China. J Acquir Immune Defic Syndr 2009, 50:1-8.
- [7]Dahl V, Palmer S: Establishment of drug-resistant HIV-1 in latent reservoirs. J Infect Dis 2009, 199:1258-1260.
- [8]Smith RJ, Okano JT, Kahn JS, Bodine EN, Blower S: Evolutionary dynamics of complex networks of HIV drug-resistant strains: the case of San Francisco. Science 2010, 327:697-701.
- [9]Huseby D, Barklis RL, Alfadhli A, Barklis E: Assembly of human immunodeficiency virus precursor gag proteins. J Biol Chem 2005, 280:17664-17670.
- [10]Gottlinger HG: The HIV-1 assembly machine. AIDS 2001, Suppl 5:13-20.
- [11]Freed EO: HIV-1 gag proteins: diverse functions in the virus life cycle. Virol 1998, 251:1-15.
- [12]Shah VB, Aiken C: In vitro uncoating of HIV-1 cores. J Vis Exp 2011, 57:3384.
- [13]Barklis E, Alfadhli A, McQuaw C, Yalamuri S, Still A, Barklis RL, et al.: Characterization of the in vitro HIV-1 capsid assembly pathway. J Mol Biol 2009, 387:376-389.
- [14]Aiken C: Viral and cellular factors that regulate HIV-1 uncoating. Curr Opin HIV AIDS 2006, 1:194-199.
- [15]Abdurahman S, Vegvari A, Youssefi M, Levi M, Hoglund S, Andersson E, et al.: Activity of the small modified amino acid alpha-hydroxy glycineamide on in vitro and in vivo human immunodeficiency virus type 1 capsid assembly and infectivity. Antimicrob Agents Chemother 2008, 52:3737-3744.
- [16]Blair WS, Pickford C, Irving SL, Brown DG, Anderson M, Bazin R, et al.: HIV capsid is a tractable target for small molecule therapeutic intervention. PLoS Pathog 2010, 6:e1001220.
- [17]Curreli F, Zhang H, Zhang X, Pyatkin I, Victor Z, Altieri A, et al.: Virtual screening based identification of novel small-molecule inhibitors targeted to the HIV-1 capsid. Bioorg Med Chem 2011, 19:77-90.
- [18]Tang C, Loeliger E, Kinde I, Kyere S, Mayo K, Barklis E, et al.: Antiviral inhibition of the HIV-1 capsid protein. J Mol Biol 2003, 327:1013-1020.
- [19]Zhang H, Curreli F, Zhang X, Bhattacharya S, Waheed AA, Cooper A, et al.: Antiviral activity of alpha-helical stapled peptides designed from the HIV-1 capsid dimerization domain. Retrovirology 2011, 8:28. BioMed Central Full Text
- [20]Prevelige J: New Approaches for Antiviral Targeting of HIV Assembly. J Mol Biol 2011, 410:634-640.
- [21]Sticht J, Humbert M, Findlow S, Bodem J, Muller B, Dietrich U, et al.: A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 2005, 12:671-677.
- [22]Kelly BN, Kyere S, Kinde I, Tang C, Howard BR, Robinson H, et al.: Structure of the antiviral assembly inhibitor CAP-1 complex with the HIV-1 CA protein. J Mol Biol 2007, 373:355-366.
- [23]Schafmeister CE, Po J, Verdine GL: An all-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc 2000, 122:5891-5892.
- [24]Zhang H, Zhao Q, Bhattacharya S, Waheed AA, Tong X, Hong A, et al.: A cellpenetrating helical peptide as a potential HIV-1 inhibitor. J Mol Biol 2008, 378:565-580.
- [25]Ternois F, Sticht J, Duquerroy S, Krausslich HG, Rey FA: The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Nat Struct Mol Biol 2005, 12:678-682.
- [26]Freed EO, Myers DJ, Risser R: Identification of the principal neutralizing determinant of human immunodeficiency virus type 1 as a fusion domain. J Virol 1991, 65:190-194.
- [27]Ivanoff LA, Dubay JW, Morris JF, Roberts SJ, Gutshall L, Sternberg EJ, et al.: V3 loop region of the HIV-1 gp120 envelope protein is essential for virus infectivity. Virol 1992, 187:423-432.
- [28]Debnath AK, Radigan L, Jiang S: Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J Med Chem 1999, 42:3203-3209.
- [29]Shin R, Tzou YM, Krishna NR: Structure of a monomeric mutant of the HIV-1 capsid protein. Biochemistry 2011, 50:9457-9467.
- [30]Lanman J, Lam TT, Barnes S, Sakalian M, Emmett MR, Marshall AG, et al.: Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. J Mol Biol 2003, 325:759-772.
- [31]Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, et al.: Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 1997, 278:849-853.
- [32]Bhattacharya S, Zhang H, Debnath AK, Cowburn D: Solution structure of a hydrocarbon stapled peptide inhibitor in complex with monomeric C-terminal domain of HIV-1 capsid. J Biol Chem 2008, 283:16274-16278.
- [33]Gross I, Hohenberg H, Wilk T, Wiegers K, Grattinger M, Muller B, et al.: A conformational switch controlling HIV-1 morphogenesis. EMBO J 2000, 19:103-113.
- [34]Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD, et al.: X-ray structures of the hexameric building block of the HIV capsid. Cell 2009, 137:1282-1292.
- [35]von Schwedler UK, Stemmler TL, Klishko VY, Li S, Albertine KH, Davis DR, et al.: Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J 1998, 17:1555-1568.
- [36]Lanman J, Sexton J, Sakalian M, Prevelige PE Jr: Kinetic analysis of the role of intersubunit interactions in human immunodeficiency virus type 1 capsid protein assembly in vitro. J Virol 2002, 76:6900-6908.
- [37]Wang CT, Barklis E: Assembly, processing, and infectivity of human immunodeficiency virus type 1 gag mutants. J Virol 1993, 67:4264-4273.
- [38]Bell NM, Lever AML: HIV Gag polyprotein: processing and early viral particle assembly. Trends Microbiol 2013, 21:136-144.
- [39]Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M, et al.: Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 2005, 79:10108-10125.
- [40]Mascola JR, D'Souza P, Gilbert P, Hahn BH, Haigwood NL, Morris L, et al.: Recommendations for the design and use of standard virus panels to assess neutralizing antibody responses elicited by candidate human immunodeficiency virus type 1 vaccines. J Virol 2005, 79:10103-10107.
- [41]Sun TL, Sun Y, Lee CC, Huang HW: Membrane permeability of hydrocarbon-cross-linked peptides. Biophys J 2013, 104:1923-1932.
- [42]Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL: Reactivation of the p53 Tumor Suppressor Pathway by a Stapled p53 Peptide. J Am Chem Soc 2007, 129:2456-2457.
- [43]Jensen MA, van 't Wout AB: Predicting HIV-1 coreceptor usage with sequence analysis. AIDS Rev 2003, 5:104-112.
- [44]Hartley O, Klasse PJ, Sattentau QJ, Moore JP: V3: HIV's switch-hitter. AIDS Res Hum Retroviruses 2005, 21:171-189.
- [45]Suphaphiphat P, Essex M, Lee TH: Mutations in the V3 stem versus the V3 crown and C4 region have different effects on the binding and fusion steps of human immunodeficiency virus type 1 gp120 interaction with the CCR5 coreceptor. Virol 2007, 360:182-190.
- [46]Cormier EG, Dragic T: The crown and stem of the V3 loop play distinct roles in human immunodeficiency virus type 1 envelope glycoprotein interactions with the CCR5 coreceptor. J Virol 2002, 76:8953-8957.
- [47]Yokoyama M, Naganawa S, Yoshimura K, Matsushita S, Sato H: Structural dynamics of HIV-1 envelope Gp120 outer domain with V3 loop. PLoS One 2012, 7:e37530.
- [48]Debnath AK, Jiang S, Strick N, Lin K, Haberfield P, Neurath AR: Three-dimensional structure-activity analysis of a series of porphyrin derivatives with anti-HIV-1 activity targeted to the V3 loop of the gp120 envelope glycoprotein of the human immunodeficiency virus type 1. J Med Chem 1994, 37:1099-1108.
- [49]Neurath AR, Strick N, Debnath AK: Structural requirements for and consequences of an antiviral porphyrin binding to the V3 loop of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp120. J Mol Recognit 1995, 8:345-357.
- [50]Batini-ç D, Robey FA: The V3 region of the envelope glycoprotein of human immunodeficiency virus type 1 binds sulfated polysaccharides and CD4-derived synthetic peptides. J Biol Chem 1992, 267:6664-6671.
- [51]Baba M, Schols D, Pauwels R, Nakashima H, De CE: Sulfated polysaccharides as potent inhibitors of HIV-induced syncytium formation: a new strategy towards AIDS chemotherapy. J Acquir Immune Defic Syndr 1990, 3:493-499.
- [52]Yuan Y, Yokoyama M, Maeda Y, Terasawa H, Harada S, Sato H, et al.: Structure and dynamics of the gp120 V3 loop that confers noncompetitive resistance in R5 HIV-1JR-FL to Maraviroc. PLoS One 2013, 8:e65115.
- [53]Huang L, Ho P, Lee KH, Chen CH: Synthesis and anti-HIV activity of bi-functional betulinic acid derivatives. Bioorg Med Chem 2006, 14:2279-2289.
- [54]Smith SD, Shatsky M, Cohen PS, Warnke R, Link MP, Glader BE: Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines. Cancer Res 1984, 44:5657-5660.
- [55]Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D: Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1. J Virol 1998, 72:2855-2864.
- [56]Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, et al.: Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002, 46:1896-1905.
- [57]Demirov DG, Ono A, Orenstein JM, Freed EO: Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci U S A 2002, 99:955-960.
- [58]Connor RI, Chen BK, Choe S, Landau NR: Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 1995, 206:935-944.
- [59]He J, Choe S, Walker R, di MP, Morgan DO, Landau NR: Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol 1995, 69:6705-6711.
- [60]Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, et al.: Antibody neutralization and escape by HIV-1. Nature 2003, 422:307-312.
- [61]Page KA, Landau NR, Littman DR: Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 1990, 64:5270-5276.
- [62]Kolchinsky P, Mirzabekov T, Farzan M, Kiprilov E, Cayabyab M, Mooney LJ, et al.: Adaptation of a CCR5-using, primary human immunodeficiency virus type 1 isolate for CD4-independent replication. J Virol 1999, 73:8120-8126.
- [63]Blish CA, Jalalian-Lechak Z, Rainwater S, Nguyen MA, Dogan OC, Overbaugh J: Cross-subtype neutralization sensitivity despite monoclonal antibody resistance among early subtype A, C, and D envelope variants of human immunodeficiency virus type 1. J Virol 2009, 83:7783-7788.
- [64]Long EM, Rainwater SM, Lavreys L, Mandaliya K, Overbaugh J: HIV type 1 variants transmitted to women in Kenya require the CCR5 coreceptor for entry, regardless of the genetic complexity of the infecting virus. AIDS Res Hum Retroviruses 2002, 18:567-576.
- [65]Kulkarni SS, Lapedes A, Tang H, Gnanakaran S, Daniels MG, Zhang M, et al.: Highly complex neutralization determinants on a monophyletic lineage of newly transmitted subtype C HIV-1 Env clones from India. Virology 2009, 385:505-520.
- [66]Derdeyn CA, Decker JM, Bibollet-Ruche F, Mokili JL, Muldoon M, Denham SA, et al.: Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 2004, 303:2019-2022.
- [67]Williamson C, Morris L, Maughan MF, Ping LH, Dryga SA, Thomas R, et al.: Characterization and selection of HIV-1 subtype C isolates for use in vaccine development. AIDS Res Hum Retroviruses 2003, 19:133-144.
- [68]Douglas CC, Thomas D, Lanman J, Prevelige PE Jr: Investigation of N-terminal domain charged residues on the assembly and stability of HIV-1 CA. Biochemistry 2004, 43:10435-10441.
- [69]Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, et al.: Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 1986, 59:284-291.
- [70]Freed EO, Martin MA: Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 1995, 69:1984-1989.
- [71]Murakami T, Freed EO: Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol 2000, 74:3548-3554.
- [72]Murakami T, Freed EO: The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci U S A 2000, 97:343-348.
- [73]Yee JK, Friedmann T, Burns JC: Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 1994, 43 Pt A:99-112.
- [74]Freed EO, Martin MA: Evidence for a functional interaction between the V1/V2 and C4 domains of human immunodeficiency virus type 1 envelope glycoprotein gp120. J Virol 1994, 68:2503-2512.
- [75]Ganser-Pornillos BK, von Schwedler UK, Stray KM, Aiken C, Sundquist WI: Assembly properties of the human immunodeficiency virus type 1 CA protein. J Virol 2004, 78:2545-2552.
- [76]Ehrlich LS, Liu T, Scarlata S, Chu B, Carter CA: HIV-1 capsid protein forms spherical (immature-like) and tubular (mature-like) particles in vitro: structure switching by pH-induced conformational changes. Biophys J 2001, 81:586-594.
- [77]Gross I, Hohenberg H, Krausslich HG: In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur J Biochem 1997, 249:592-600.