期刊论文详细信息
BMC Microbiology
Computational approaches for discovery of common immunomodulators in fungal infections: towards broad-spectrum immunotherapeutic interventions
T M Murali1  Christopher Lawrence2  Yared H Kidane3 
[1] ICTAS Center for Systems Biology of Engineered Tissues, Virginia Tech, Blacksburg, VA 24061, USA;Department of Biology, Virginia Tech, Blacksburg, VA 24061, USA;, Universities Space Research Association, Houston, TX 77058, USA
关键词: Immunotherapy;    Drug-target discovery;    Drug-resistance;    Immunomodulation;    Broad-spectrum target;    Host-oriented therapy;   
Others  :  1142896
DOI  :  10.1186/1471-2180-13-224
 received in 2013-02-27, accepted in 2013-09-17,  发布年份 2013
PDF
【 摘 要 】

Background

Fungi are the second most abundant type of human pathogens. Invasive fungal pathogens are leading causes of life-threatening infections in clinical settings. Toxicity to the host and drug-resistance are two major deleterious issues associated with existing antifungal agents. Increasing a host’s tolerance and/or immunity to fungal pathogens has potential to alleviate these problems. A host’s tolerance may be improved by modulating the immune system such that it responds more rapidly and robustly in all facets, ranging from the recognition of pathogens to their clearance from the host. An understanding of biological processes and genes that are perturbed during attempted fungal exposure, colonization, and/or invasion will help guide the identification of endogenous immunomodulators and/or small molecules that activate host-immune responses such as specialized adjuvants.

Results

In this study, we present computational techniques and approaches using publicly available transcriptional data sets, to predict immunomodulators that may act against multiple fungal pathogens. Our study analyzed data sets derived from host cells exposed to five fungal pathogens, namely, Alternaria alternata, Aspergillus fumigatus, Candida albicans, Pneumocystis jirovecii, and Stachybotrys chartarum. We observed statistically significant associations between host responses to A. fumigatus and C. albicans. Our analysis identified biological processes that were consistently perturbed by these two pathogens. These processes contained both immune response-inducing genes such as MALT1, SERPINE1, ICAM1, and IL8, and immune response-repressing genes such as DUSP8, DUSP6, and SPRED2. We hypothesize that these genes belong to a pool of common immunomodulators that can potentially be activated or suppressed (agonized or antagonized) in order to render the host more tolerant to infections caused by A. fumigatus and C. albicans.

Conclusions

Our computational approaches and methodologies described here can now be applied to newly generated or expanded data sets for further elucidation of additional drug targets. Moreover, identified immunomodulators may be used to generate experimentally testable hypotheses that could help in the discovery of broad-spectrum immunotherapeutic interventions. All of our results are available at the following supplementary website: http://bioinformatics.cs.vt.edu/~murali/supplements/2013-kidane-bmc webcite

【 授权许可】

   
2013 Kidane et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328184406315.pdf 695KB PDF download
Figure 5. 37KB Image download
Figure 4. 72KB Image download
Figure 3. 90KB Image download
Figure 2. 55KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Woolhouse ME, Gowtage-Sequeria S: Host range and emerging and reemerging pathogens. Emerg Infect Dis 2005, 11(12):1842-1847. http://view.ncbi.nlm.nih.gov/pubmed/16485468 webcite
  • [2]Zilberberg MD, Shorr AF, Kollef MH: Secular trends in candidemia-related hospitalization in the United States, 2000–2005. Infect Control Hosp Epidemiol 2008, 29(10):978-980. http://dx.doi.org/10.1086/591033 webcite
  • [3]McNeil MM, Nash SL, Hajjeh RA, Phelan MA, Conn LA, Plikaytis BD, Warnock DW: Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. Clin Infect Dis 2001, 33(5):641-647. http://dx.doi.org/10.1086/322606 webcite
  • [4]Maschmeyer G: The changing epidemiology of invasive fungal infections: new threats. Int J Antimicrob Agents 2006, 27(Suppl 1):3-6. http://dx.doi.org/10.1016/j.ijantimicag.2006.03.006 webcite
  • [5]Vandeputte P, Ferrari S, Coste AT: Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012, 2012. http://dx.doi.org/10.1155/2012/713687 webcite
  • [6]Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH: An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010, 9(9):719-727. http://dx.doi.org/10.1038/nrd3074 webcite
  • [7]Dismukes WE: Introduction to antifungal drugs. Clin Infect Dis 2000, 30(4):653-657. http://dx.doi.org/10.1086/313748 webcite
  • [8]Kontoyiannis DP, Lewis RE: Antifungal drug resistance of pathogenic fungi. Lancet 2002, 359(9312):1135-1144. http://dx.doi.org/10.1016/S0140-6736(02)08162-X webcite
  • [9]Pfaller MA: Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 2012., 125(1 Suppl) http://dx.doi.org/10.1016/j.amjmed.2011.11.001 webcite
  • [10]Schneider DS, Ayres JS: Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 2008, 8(11):889-895. http://dx.doi.org/10.1038/nri2432 webcite
  • [11]Romani L: Immunity to fungal infections. Nat Rev Immunol 2011, 11(4):275-288. http://dx.doi.org/10.1038/nri2939 webcite
  • [12]Tseng HKK, Perfect JR: Strategies to manage antifungal drug resistance. Expert Opin Pharmacother 2011, 12(2):241-256. http://dx.doi.org/10.1517/14656566.2010.517195 webcite
  • [13]Garlanda C, Hirsch E, Bozza S, Salustri A, De Acetis M, Nota R, Maccagno A, Riva F, Bottazzi B, Peri G, Doni A, Vago L, Botto M, De Santis R, Carminati P, Siracusa G, Altruda F, Vecchi A, Romani L, Mantovani A: Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 2002, 420(6912):182-186. http://dx.doi.org/10.1038/nature01195 webcite
  • [14]Lo Giudice P, Campo S, Verdoliva A, Rivieccio V, Borsini F, De Santis R, Salvatori G: Efficacy of PTX3 in a rat model of invasive aspergillosis. Antimicrob Agents Chemother 2010, 54(10):4513-4515. http://dx.doi.org/10.1128/AAC.00674-10 webcite
  • [15]Romani L, Bistoni F, Gaziano R, Bozza S, Montagnoli C, Perruccio K, Pitzurra L, Bellocchio S, Velardi A, Rasi G, Di Francesco P, Garaci E: Thymosin alpha 1 activates dendritic cells for antifungal Th1 resistance through toll-like receptor signaling. Blood 2004, 103(11):4232-4239. http://dx.doi.org/10.1182/blood-2003-11-4036 webcite
  • [16]Stuehler C, Khanna N, Bozza S, Zelante T, Moretti S, Kruhm M, Lurati S, Conrad B, Worschech E, Stevanović S, Krappmann S, Einsele H, Latgé JPP, Loeffler J, Romani L, Topp MS: Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. Blood 2011, 117(22):5881-5891. http://dx.doi.org/10.1182/blood-2010-12-325084 webcite
  • [17]Zhu Y, Davis S, Stephens R, Meltzer PS, Chen Y: GEOmetadb: powerful alternative search engine for the Gene Expression Omnibus. Bioinformatics 2008, 24(23):2798-2800. http://dx.doi.org/10.1093/bioinformatics/btn520 webcite
  • [18]Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Holloway E, Kurbatova N, Lukk M, Malone J, Mani R, Pilicheva E, Rustici G, Sharma A, Williams E, Adamusiak T, Brandizi M, Sklyar N, Brazma A: ArrayExpress update–an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 2011, 39(Database issue):D1002-D1004. http://dx.doi.org/10.1093/nar/gkq1040 webcite
  • [19]Mezger M, Wozniok I, Blockhaus C, Kurzai O, Hebart H, Einsele H, Loeffler J: Impact of mycophenolic acid on the functionality of human polymorphonuclear neutrophils and dendritic cells during interaction with Aspergillus fumigatus. Antimicrob Agents Chemother 2008, 52(7):2644-2646. http://dx.doi.org/10.1128/AAC.01618-07 webcite
  • [20]Gomez P, Hackett TL, Moore MM, Knight DA, Tebbutt SJ: Functional genomics of human bronchial epithelial cells directly interacting with conidia of Aspergillus fumigatus. BMC genomics 2010,. 11. http://dx.doi.org/10.1186/1471-2164-11-358 webcite
  • [21]Sharon H, Amar D, Levdansky E, Mircus G, Shadkchan Y, Shamir R, Osherov N: PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death. PloS one 2011, 6(3):e17509. http://dx.doi.org/10.1371/journal.pone.0017509 webcite
  • [22]Rizzetto L, Kuka M, De Filippo C, Cambi A, Netea MG, Beltrame L, Napolitani G, Torcia MG, D’Oro U, Cavalieri D: Differential IL-17 production and mannan recognition contribute to fungal pathogenicity and commensalism. J Immunol 2010, 184(8):4258-4268. http://dx.doi.org/10.4049/jimmunol.0902972 webcite
  • [23]Müller V, Viemann D, Schmidt M, Endres N, Ludwig S, Leverkus M, Roth J, Goebeler M: Candida albicans triggers activation of distinct signaling pathways to establish a proinflammatory gene expression program in primary human endothelial cells. J Immunol (Baltimore, Md. : 1950) 2007, 179(12):8435-8445. http://view.ncbi.nlm.nih.gov/pubmed/18056390 webcite
  • [24]Cheng BHH, Liu Y, Xuei X, Liao CPP, Lu D, Lasbury ME, Durant PJ, Lee CHH: Microarray studies on effects of Pneumocystis carinii infection on global gene expression in alveolar macrophages. BMC Microbiol 2010, 10:103+. http://dx.doi.org/10.1186/1471-2180-10-103 webcite BioMed Central Full Text
  • [25]Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, Paulovich A, Pomeroy S, Golub T, Lander E, Mesirov J: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005. http: //eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?cmd=prlinks&dbfrom=pubmed&retmode=ref&id=16199517
  • [26]Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 2006, 22(9):1122-1129. http://dx.doi.org/10.1093/bioinformatics/btl060 webcite
  • [27]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995, 57:289-300.
  • [28]Paris S, Boisvieux-Ulrich E, Crestani B, Houcine O, Taramelli D, Lombardi L, Latgé JP: Internalization of Aspergillus fumigatus conidia by epithelial and endothelial cells. Infect Immun 1997, 65(4):1510-1514. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC175160/ webcite
  • [29]Hube B: From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 2004, 7(4):336-341. http://dx.doi.org/10.1016/j.mib.2004.06.003 webcite
  • [30]Brakhage AA: Systemic fungal infections caused by Aspergillus species: epidemiology, infection process and virulence determinants. Curr Drug Targets 2005, 6(8):875-886. http://view.ncbi.nlm.nih.gov/pubmed/16375671 webcite
  • [31]Gross O, Gewies A, Finger K, Schäfer M, Sparwasser T, Peschel C, Förster I, Ruland J: Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 2006, 442(7103):651-656. http://dx.doi.org/10.1038/nature04926 webcite
  • [32]Ouyang W, Kolls JK, Zheng Y: The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008, 28(4):454-467. http://dx.doi.org/10.1016/j.immuni.2008.03.004 webcite
  • [33]Gringhuis SI, Wevers BA, Kaptein TM, van Capel TMM, Theelen B, Boekhout T, de Jong EC, Geijtenbeek TBH: Selective C-Rel activation via Malt1 controls anti-fungal TH-17 immunity by Dectin-1 and Dectin-2. PLoS Pathog 2011, 7:e1001259+. http://dx.doi.org/10.1371/journal.ppat.1001259 webcite
  • [34]Cesarman-Maus G, Hajjar KA: Molecular mechanisms of fibrinolysis. Br J Haematology 2005, 129(3):307-321. http://dx.doi.org/10.1111/j.1365-2141.2005.05444.x webcite
  • [35]Jong AY, Chen SHM, Stins MF, Kim KS, Tuan TL, Huang SH: Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol 2003, 52(8):615-622. http://dx.doi.org/10.1099/jmm.0.05060-0 webcite
  • [36]Loeffler J, Haddad Z, Bonin M, Romeike N, Mezger M, Schumacher U, Kapp M, Gebhardt F, Grigoleit GU, Stevanović S, Einsele H, Hebart H: Interaction analyses of human monocytes co-cultured with different forms of Aspergillus fumigatus. J Med Microbiol 2009, 58:49-58. http://dx.doi.org/10.1099/jmm.0.003293-0 webcite
  • [37]Huang GT, Haake SK, Kim JW, Park NH: Differential expression of interleukin-8 and intercellular adhesion molecule-1 by human gingival epithelial cells in response to Actinobacillus actinomycetemcomitans or Porphyromonas gingivalis infection. Oral Microbiol Immunol 1998, 13(5):301-309. http://view.ncbi.nlm.nih.gov/pubmed/9807122 webcite
  • [38]Egusa H, Nikawa H, Makihira S, Jewett A, Yatani H, Hamada T: Intercellular adhesion molecule 1-dependent activation of interleukin 8 expression in Candida albicans-infected human gingival epithelial cells. Infect Immun 2005, 73:622-626. http://dx.doi.org/10.1128/IAI.73.1.622-626.2005 webcite
  • [39]Mostefaoui Y, Bart C, Frenette M, Rouabhia M: Candida albicans and Streptococcus salivarius modulate IL-6, IL-8, and TNF-a expression and secretion by engineered human oral mucosa cells. Cell Microbiol 2004, 6(11):1085-1096. http://dx.doi.org/10.1111/j.1462-5822.2004.00420.x webcite
  • [40]Borger P, Koëter GH, Timmerman JA, Vellenga E, Tomee JF, Kauffman HF: Proteases from Aspergillus fumigatus induce interleukin (IL)-6 and IL-8 production in airway epithelial cell lines by transcriptional mechanisms. J Infect Dis 1999, 180(4):1267-1274. http://dx.doi.org/10.1086/315027 webcite
  • [41]Dongari-Bagtzoglou A, Kashleva H, Villar CC: Bioactive interleukin-1alpha is cytolytically released from Candida albicans-infected oral epithelial cells. Med Mycol 2004, 42(6):531-541. http://view.ncbi.nlm.nih.gov/pubmed/15682642 webcite
  • [42]Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH: Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001, 22(2):153-183. http://dx.doi.org/10.1210/er.22.2.153 webcite
  • [43]Dubourdeau M, Athman R, Balloy V, Huerre M, Chignard M, Philpott DJ, Latgé JPP, Ibrahim-Granet O: Aspergillus fumigatus induces innate immune responses in alveolar macrophages through the MAPK pathway independently of TLR2 and TLR4. J Immunol (Baltimore, Md. : 1950) 2006, 177(6):3994-4001. http://view.ncbi.nlm.nih.gov/pubmed/16951362 webcite
  • [44]Keyse SM: Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer Metastasis Rev 2008, 27(2):253-261. http://dx.doi.org/10.1007/s10555-008-9123-1 webcite
  • [45]Nonami A, Kato R, Taniguchi K, Yoshiga D, Taketomi T, Fukuyama S, Harada M, Sasaki A, Yoshimura A: Spred-1 negatively regulates interleukin-3-mediated ERK/mitogen-activated protein (MAP) kinase activation in hematopoietic cells. J Biol Chem 2004, 279(50):52543-52551. http://dx.doi.org/10.1074/jbc.M405189200 webcite
  • [46]Morrison BE, Park SJ, Mooney JM, Mehrad B: Chemokine-mediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J Clin Invest 2003, 112(12):1862-1870. http://dx.doi.org/10.1172/JCI18125 webcite
  • [47]Steele C, Fidel PL: Cytokine and chemokine production by human oral and vaginal epithelial cells in response to Candida albicans. Infect Immun 2002, 70(2):577-583. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC127706/ webcite
  • [48]Oshima S, Turer EE, Callahan JA, Chai S, Advincula R, Barrera J, Shifrin N, Lee B, Benedict Yen TS, Yen B, Woo T, Malynn BA, Ma A: ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 2009, 457(7231):906-909. http://dx.doi.org/10.1038/nature07575 webcite
  • [49]Verstrepen L, Carpentier I, Verhelst K, Beyaert R: ABINs: A20 binding inhibitors of NF-?B and apoptosis signaling. Biochem Pharmacol 2009, 78(2):105-114. http://dx.doi.org/10.1016/j.bcp.2009.02.009 webcite
  • [50]Giraldo E, Martin-Cordero L, Hinchado MD, Garcia JJ, Ortega E: Role of phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK) and nuclear transcription factor kappa beta (NF-k beta) on neutrophil phagocytic process of Candida albicans. Mol Cell Biochem 2010, 333:115-120. http://dx.doi.org/10.1007/s11010-009-0211-5 webcite
  • [51]Varjosalo M, Taipale J: Hedgehog: functions and mechanisms. Genes Dev 2008, 22(18):2454-2472. http://dx.doi.org/10.1101/gad.1693608 webcite
  • [52]Choi SS, Bradrick S, Qiang G, Mostafavi A, Chaturvedi G, Weinman SA, Diehl AMM, Jhaveri R: Up-regulation of Hedgehog pathway is associated with cellular permissiveness for hepatitis C virus replication. Hepatology (Baltimore, Md.) 2011, 54(5):1580-1590. http://dx.doi.org/10.1002/hep.24576 webcite
  • [53]Paya CV: Prevention of fungal and hepatitis virus infections in liver transplantation. Clin Infect Dis 2001., 33(Suppl 1) http://dx.doi.org/10.1086/320904 webcite
  • [54]Kudlacz EM, Andresen CJ, Salafia M, Whitney CA, Naclerio B, Changelian PS: Genetic ablation of the src kinase p59fynT exacerbates pulmonary inflammation in an allergic mouse model. Am J Respir Cell Mol Biol 2001, 24(4):469-474. http://view.ncbi.nlm.nih.gov/pubmed/11306441 webcite
  • [55]Hebart H, Bollinger C, Fisch P, Sarfati J, Meisner C, Baur M, Loeffler J, Monod M, Latgé JPP, Einsele H: Analysis of T-cell responses to Aspergillus fumigatus antigens in healthy individuals and patients with hematologic malignancies. Blood 2002, 100(13):4521-4528. http://dx.doi.org/10.1182/blood-2002-01-0265 webcite
  • [56]Vultaggio A, Lombardelli L, Giudizi MGG, Biagiotti R, Mazzinghi B, Scaletti C, Mazzetti M, Livi C, Leoncini F, Romagnani S, Maggi E, Piccinni MPP: T cells specific for Candida albicans antigens and producing type 2 cytokines in lesional mucosa of untreated HIV-infected patients with pseudomembranous oropharyngeal candidiasis. Microbes Infect / Institut Pasteur 2008, 10(2):166-174. http://dx.doi.org/10.1016/j.micinf.2007.11.004 webcite
  • [57]Shirakata Y, Komurasaki T, Toyoda H, Hanakawa Y, Yamasaki K, Tokumaru S, Sayama K, Hashimoto K: Epiregulin, a novel member of the epidermal growth factor family, is an autocrine growth factor in normal human keratinocytes. J Biol Chem 2000, 275(8):5748-5753. http://view.ncbi.nlm.nih.gov/pubmed/10681561 webcite
  • [58]Cornish EJ, Hurtgen BJ, McInnerney K, Burritt NL, Taylor RM, Jarvis JN, Wang SY, Burritt JB: Reduced Nicotinamide Adenine Dinucleotide Phosphate Oxidase-Independent resistance to Aspergillus fumigatus in Alveolar Macrophages. J Immunol 2008, 180(10):6854-6867. http://www.jimmunol.org/content/180/10/6854.abstract webcite
  • [59]Pietrella D, Rachini A, Pandey N, Schild L, Netea M, Bistoni F, Hube B, Vecchiarelli A: The inflammatory response induced by Aspartic Proteases of Candida albicans is independent of proteolytic activity. Infect Immun 2010, 78(11):4754-4762. http://dx.doi.org/10.1128/IAI.00789-10 webcite
  • [60]Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH, Patriotis C, Jenkins NA, Copeland NG, Kollias G, Tsichlis PN: TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 2000, 103(7):1071-1083. http://view.ncbi.nlm.nih.gov/pubmed/11163183 webcite
  • [61]Dhawan P, Richmond A: A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 2002, 277(10):7920-7928. http://dx.doi.org/10.1074/jbc.M112210200 webcite
  • [62]Schwarzer R, Dames S, Tondera D, Klippel A, Kaufmann J: TRB3 is a PI 3-kinase dependent indicator for nutrient starvation. Cell Signal 2006, 18(6):899-909. http://dx.doi.org/10.1016/j.cellsig.2005.08.002 webcite
  • [63]Liu L, Okada S, Kong XFF, Kreins AY, Cypowyj S, Abhyankar A, Toubiana J, Itan Y, Audry M, Nitschke P, Masson C, Toth B, Flatot J, Migaud M, Chrabieh M, Kochetkov T, Bolze A, Borghesi A, Toulon A, Hiller J, Eyerich S, Eyerich K, Gulácsy V, Chernyshova L, Chernyshov V, Bondarenko A, Grimaldo RMCM, Blancas-Galicia L, Beas IMMM, Roesler J, et al.: Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 2011, 208(8):1635-1648. http://dx.doi.org/10.1084/jem.20110958 webcite
  • [64]van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LA, Gilissen C, Arts P, Rosentul DC, Carmichael AJ, Smits-van der Graaf CA, Kullberg BJJ, van der Meer JW, Lilic D, Veltman JA, Netea MG: STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. New England J Med 2011, 365:54-61. http://dx.doi.org/10.1056/NEJMoa1100102 webcite
  • [65]Li H, Lin X: Positive and negative signaling components involved in TNFalpha-induced NF-kappaB activation. Cytokine 2008, 41:1-8. http://dx.doi.org/10.1016/j.cyto.2007.09.016 webcite
  • [66]Bouveret E, Rigaut G, Shevchenko A, Wilm M, Séraphin B: A Sm-like protein complex that participates in mRNA degradation. EMBO J 2000, 19(7):1661-1671. http://dx.doi.org/10.1093/emboj/19.7.1661 webcite
  • [67]Hollams EM, Giles KM, Thomson AM, Leedman PJ: MRNA stability and the control of gene expression: implications for human disease. Neurochem Res 2002, 27(10):957-980. http://view.ncbi.nlm.nih.gov/pubmed/12462398 webcite
  • [68]Nakagawa J: Transient responses via regulation of mRNA stability as an immuno-logical strategy for countering infectious diseases. Infect Disord Drug Targets 2008, 8(4):232-240. http://view.ncbi.nlm.nih.gov/pubmed/19075798 webcite
  • [69]Eberhardt W, Doller A, Akool ES, Pfeilschifter J: Modulation of mRNA stability as a novel therapeutic approach. Pharmacol Ther 2007, 114:56-73. http://dx.doi.org/10.1016/j.pharmthera.2007.01.002 webcite
  • [70]Martins VdPdeP, Dinamarco TMM, Curti C, Uyemura SAA: Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets. J Bioenerg Biomembranes 2011, 43:81-88. http://dx.doi.org/10.1007/s10863-011-9331-1 webcite
  • [71]Ebermann L, Wika S, Klumpe I, Hammer E, Klingel K, Lassner D, Völker U, Erben U, Zeichhardt H, Schultheiss HPP, Dörner A: The mitochondrial respiratory chain has a critical role in the antiviral process in Coxsackievirus B3-induced myocarditis. Lab Invest J Tech Methods Pathol 2012, 92:125-134. http://dx.doi.org/10.1038/labinvest.2011.145 webcite
  • [72]Lasher C, Rajagopalan P, Murali TM: Summarizing cellular responses as biological process networks. BMC Systems Biology 2013,. 7:68+. http://dx.doi.org/10.1186/1752-0509-7-68 webcite
  • [73]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-504.
  • [74]Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic acids Res 2011, 39(Database issue):D561-D568. http://dx.doi.org/10.1093/nar/gkq973 webcite
  • [75]Agresti A: Categorical Data Analysis. New York: Wiley; 2009:. 350–354
  • [76]Kidane YH, Lawrence C, Murali TM: The landscape of host transcriptional response programs commonly perturbed by bacterial pathogens: towards host-oriented broad-spectrum drug targets. PloS one 2013, 8(3):e58553. http://dx.doi.org/10.1371/journal.pone.0058553 webcite
  文献评价指标  
  下载次数:49次 浏览次数:12次