期刊论文详细信息
Molecular Pain
p38 MAPK mediates glial P2X7R-neuronal P2Y1R inhibitory control of P2X3R expression in dorsal root ganglion neurons
Li-Yen Mae Huang1  Guangwen Li1  Yong Chen1 
[1] Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston 77555-1069, TX, USA
关键词: Satellite glial cell;    Purinergic;    Pain;    p38;    P2Y1;    P2X7;    P2X3;    Dorsal root ganglion;   
Others  :  1233609
DOI  :  10.1186/s12990-015-0073-7
 received in 2015-10-12, accepted in 2015-10-27,  发布年份 2015
PDF
【 摘 要 】

Background

We have previously shown that endogenously active purinergic P2X7 receptors (P2X7Rs) in satellite glial cells of dorsal root ganglia (DRGs) stimulate ATP release. The ATP activates P2Y1Rs located in the enwrapped neuronal somata, resulting in down-regulation of P2X3Rs. This P2X7R-P2Y1-P2X3R inhibitory control significantly reduces P2X3R-mediated nociceptive responses. The underlying mechanism by which the activation of P2Y1Rs inhibits the expression of P2X3Rs remains unexplored.

Results

Examining the effect of the activation of p38 mitogen-activated protein kinase on the expression of P2X3Rs in DRGs, we found that the p38 activator, anisomycin (Anis), reduced the expression of P2X3Rs. Blocking the activity of SGCs by the glial Krebs cycle inhibitor, fluorocitrate, did not change the effect of Anis. These results suggest that neuronal p38 plays a major role in the inhibition of P2X3R expression. Western blotting analyses showed that inhibiting P2Y1Rs by MRS2179 (MRS) or blocking P2X7Rs by either oxATP or A740003 reduced pp38 and increased P2X3R expression in DRGs. These results are further supported by the immunohistochemical study showing that P2X7R and P2Y1R antagonists reduce the percentage of pp38-positive neurons. These observations suggest that activation of P2X7Rs and P2Y1Rs promotes p38 activity to exert inhibitory control on P2X3R expression. Since activation of p38 by Anis in the presence of either A740003 or MRS could overcome the block of P2X7R-P2Y1R inhibitory control, p38 in DRG neurons is downstream of P2Y1Rs. In addition, inhibition of p38 by SB202190 was found to prevent the P2X7R and P2Y1R block of P2X3R expression and increase P2X3R-mediated nociceptive flinch behaviors.

Conclusions

p38 in DRG neurons downstream of P2Y1R is necessary and sufficient for the P2X7R-P2Y1R inhibitory control of P2X3R expression.

【 授权许可】

   
2015 Chen et al.

【 预 览 】
附件列表
Files Size Format View
20151122041220877.pdf 1501KB PDF download
Fig.7. 33KB Image download
Fig.6. 61KB Image download
Fig.5. 27KB Image download
Fig.4. 29KB Image download
Fig.3. 41KB Image download
Fig.2. 59KB Image download
Fig.1. 35KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

【 参考文献 】
  • [1]Hanani M: Satellite glial cells in sensory ganglia: from form to function. Brain Res Brain Res Rev 2005, 48:457-476.
  • [2]Pannese E: The satellite cells of the sensory ganglia. Adv Anat Embryol Cell Biol 1981, 65:1-111.
  • [3]Pannese E, Ledda M, Cherkas PS, Huang TY, Hanani M: Satellite cell reactions to axon injury of sensory ganglion neurons: increase in number of gap junctions and formation of bridges connecting previously separate perineuronal sheaths. Anat Embryol 2003, 206:337-347.
  • [4]Zhang X, Chen Y, Wang C, Huang LY: Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 2007, 104:9864-9869.
  • [5]Nakatsuka T, Gu JG: P2X purinoceptors and sensory transmission. Pflugers Arch 2006, 452:598-607.
  • [6]Villa G, Fumagalli M, Verderio C, Abbracchio MP, Ceruti S: Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: an update. Neuron Glia Biol 2010, 6:31-42.
  • [7]Burnstock G, Krugel U, Abbracchio MP, Illes P: Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011, 95:229-274.
  • [8]Hanani M: Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: implications for chronic pain. Brain Res 2012, 1487:183-191.
  • [9]Franke H, Verkhratsky A, Burnstock G, Illes P: Pathophysiology of astroglial purinergic signalling. Purinergic Signalling 2012, 8:629-657.
  • [10]Huang LY, Gu Y, Chen Y: Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 2013, 61:1571-1581.
  • [11]Fabbretti E: ATP P2X3 receptors and neuronal sensitization. Frontiers Cell Neurosci 2013, 7:236.
  • [12]Magni G, Ceruti S: The purinergic system and glial cells: emerging costars in nociception. BioMed Res Int 2014, 2014:495789.
  • [13]Chen CC, Akopian AN, Sivilotti L, Colquhoun D, Burnstock G, Wood JN: A P2X purinoceptor expressed by a subset of sensory neurons. Nature 1995, 377:428-431.
  • [14]Dunn PM, Zhong Y, Burnstock G: P2X receptors in peripheral neurons. Prog Neurobiol 2001, 65:107-134.
  • [15]Xu GY, Huang LY: Peripheral inflammation sensitizes P2X receptor-mediated responses in rat dorsal root ganglion neurons. J Neurosci 2002, 22:93-102.
  • [16]North RA: P2X3 receptors and peripheral pain mechanisms. J Physiol 2004, 554:301-308.
  • [17]Chen Y, Li GW, Wang C, Gu Y, Huang LY: Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state. Pain 2005, 119:38-48.
  • [18]Zhang XF, Han P, Faltynek CR, Jarvis MF, Shieh CC: Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia. Brain Res 2005, 1052:63-70.
  • [19]Kobayashi K, Fukuoka T, Yamanaka H, Dai Y, Obata K, Tokunaga A, Noguchi K: Differential expression patterns of mRNAs for P2X receptor subunits in neurochemically characterized dorsal root ganglion neurons in the rat. J Comp Neurol 2005, 481:377-390.
  • [20]Chen Y, Zhang X, Wang C, Li G, Gu Y, Huang LY: Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc Natl Acad Sci USA 2008, 105:16773-16778.
  • [21]Colomar A, Marty V, Medina C, Combe C, Parnet P, Amedee T: Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem 2003, 278:30732-30740.
  • [22]Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN: Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005, 114:386-396.
  • [23]McGaraughty S, Chu KL, Namovic MT, Donnelly-Roberts DL, Harris RR, Zhang XF, Shieh CC, Wismer CT, Zhu CZ, Gauvin DM, Fabiyi AC, Honore P, Gregg RJ, Kort ME, Nelson DW, Carroll WA, Marsh K, Faltynek CR, Jarvis MF: P2X7-related modulation of pathological nociception in rats. Neuroscience 2007, 146:1817-1828.
  • [24]Ando RD, Mehesz B, Gyires K, Illes P, Sperlagh B: A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain. Br J Pharmacol 2010, 159:1106-1117.
  • [25]Chen Y, Li G, Huang LY: P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons. Mol Pain 2012, 8:9. BioMed Central Full Text
  • [26]Cargnello M, Roux PP: Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev MMBR 2011, 75:50-83.
  • [27]Clark AR, Dean JL, Saklatvala J: Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett 2003, 546:37-44.
  • [28]Ji RR, Gereau RWt, Malcangio M, Strichartz GR: MAP kinase and pain. Brain Res Rev 2009, 60:135-148.
  • [29]Jin SX, Zhuang ZY, Woolf CJ, Ji RR: p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 2003, 23:4017-4022.
  • [30]Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K: Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 2004, 45:89-95.
  • [31]Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD, Catalano R, Feng Y, Protter AA, Scott B, Yaksh TL: Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem 2003, 86:1534-1544.
  • [32]Trang T, Beggs S, Wan X, Salter MW: P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 2009, 29:3518-3528.
  • [33]Chu YX, Zhang Y, Zhang YQ, Zhao ZQ: Involvement of microglial P2X7 receptors and downstream signaling pathways in long-term potentiation of spinal nociceptive responses. Brain Behav Immun 2010, 24:1176-1189.
  • [34]Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K: P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci 2008, 28:2892-2902.
  • [35]Kwon SG, Roh DH, Yoon SY, Moon JY, Choi SR, Choi HS, Kang SY, Han HJ, Beitz AJ, Lee JH: Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan-induced inflammatory pain rats: involvement of p38 MAPK phosphorylation in DRGs. Neuropharmacology 2014, 79:368-379.
  • [36]Winter E, Keen P: Effects of synthesis inhibition and nervous activity on concentrations of neuronal substance P. Naunyn-Schmiedeberg’s Archiv Pharmacol 1983, 323:173-175.
  • [37]Sherrin T, Blank T, Hippel C, Rayner M, Davis RJ, Todorovic C: Hippocampal c-Jun-N-terminal kinases serve as negative regulators of associative learning. J Neurosci 2010, 30:13348-13361.
  • [38]Kawamura M, Gachet C, Inoue K, Kato F: Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice. J Neurosci 2004, 24:10835-10845.
  • [39]von Kugelgen I: Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 2006, 110:415-432.
  • [40]Wang C, Gu Y, Li GW, Huang LY: A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats. J Physiol 2007, 584:191-203.
  • [41]Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ: p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 2002, 36:57-68.
  • [42]Schafers M, Lee DH, Brors D, Yaksh TL, Sorkin LS: Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci 2003, 23:3028-3038.
  • [43]Jin X, Gereau RWt: Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha. J Neurosci 2006, 26:246-255.
  • [44]Kondo S, Kooshesh F, Sauder DN: Penetration of keratinocyte-derived cytokines into basement membrane. J Cell Physiol 1997, 171:190-195.
  • [45]Marchand F, Perretti M, McMahon SB: Role of the immune system in chronic pain. Nat Rev Neurosci 2005, 6:521-532.
  • [46]Leung L, Cahill CM: TNF-alpha and neuropathic pain–a review. J Neuroinflam 2010, 7:27. BioMed Central Full Text
  • [47]Sorkin LS, Xiao WH, Wagner R, Myers RR: Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience 1997, 81:255-262.
  • [48]Liu B, Li H, Brull SJ, Zhang JM: Increased sensitivity of sensory neurons to tumor necrosis factor alpha in rats with chronic compression of the lumbar ganglia. J Neurophysiol 2002, 88:1393-1399.
  • [49]Hucho T, Levine JD: Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 2007, 55:365-376.
  • [50]Hu P, Bembrick AL, Keay KA, McLachlan EM: Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun 2007, 21:599-616.
  • [51]Fehrenbacher JC, Nicol GD, Vasko MR: Tumor necrosis factor alpha and interleukin-1beta stimulate the expression of cyclooxygenase II but do not alter prostaglandin E2 receptor mRNA levels in cultured dorsal root ganglia cells. Pain 2005, 113:113-122.
  • [52]Jankowski MP, Rau KK, Soneji DJ, Ekmann KM, Anderson CE, Molliver DC, Koerber HR: Purinergic receptor P2Y1 regulates polymodal C-fiber thermal thresholds and sensory neuron phenotypic switching during peripheral inflammation. Pain 2012, 153:410-419.
  • [53]Fleites J. Modulation of sodium activated potassium channels (KNa) by p38 map kinase. MS Thesis, State University of New York at Buffalo 2013.
  • [54]Anand P, Shenoy R, Palmer JE, Baines AJ, Lai RY, Robertson J, Bird N, Ostenfeld T, Chizh BA: Clinical trial of the p38 MAP kinase inhibitor dilmapimod in neuropathic pain following nerve injury. Eur J Pain 2011, 15:1040-1048.
  • [55]Zarubin T, Han J: Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005, 15:11-18.
  • [56]Boyle DL, Jones TL, Hammaker D, Svensson CI, Rosengren S, Albani S, Sorkin L, Firestein GS: Regulation of peripheral inflammation by spinal p38 MAP kinase in rats. PLoS Med 2006, 3:e338.
  • [57]Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J: Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 2001, 21:7143-7152.
  • [58]Donnelly-Roberts DL, Namovic MT, Han P, Jarvis MF: Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol 2009, 157:1203-1214.
  • [59]Liu X, Hashimoto-Torii K, Torii M, Haydar TF, Rakic P: The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci USA 2008, 105:11802-11807.
  • [60]Zhang R, Sun L, Hayashi Y, Liu X, Koyama S, Wu Z, Nakanishi H: Acute p38-mediated inhibition of NMDA-induced outward currents in hippocampal CA1 neurons by interleukin-1beta. Neurobiol Dis 2010, 38:68-77.
  • [61]Agca C, Gubler A, Traber G, Beck C, Imsand C, Ail D, Caprara C, Grimm C: p38 MAPK signaling acts upstream of LIF-dependent neuroprotection during photoreceptor degeneration. Cell Death Dis 2013, 4:e785.
  • [62]Christian CA, Huguenard JR: Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling. Proc Natl Acad Sci USA 2013, 110:20278-20283.
  • [63]Hamilton SG, Wade A, McMahon SB: The effects of inflammation and inflammatory mediators on nociceptive behaviour induced by ATP analogues in the rat. Br J Pharmacol 1999, 126:326-332.
  文献评价指标  
  下载次数:111次 浏览次数:22次