期刊论文详细信息
Molecular Neurodegeneration
Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Aβ metabolism in apoE4-targeted replacement mice
Guojun Bu2  Huaxi Xu1  Yun-wu Zhang1  Xiao-Fen Chen1  Chia-Chen Liu2  Jin Hu1 
[1] Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Pharmaceutical Sciences, College of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, Fujian, China;Department of Neuroscience, Mayo Clinic, Jacksonville 32224, FL, USA
关键词: apoE-TR mice;    ;    Lipidation;    apoE;    Alzheimer’s disease;   
Others  :  1138543
DOI  :  10.1186/s13024-015-0001-3
 received in 2014-12-23, accepted in 2015-01-26,  发布年份 2015
PDF
【 摘 要 】

Background

Human apolipoprotein E (apoE) exists in three major isoforms: apoE2, apoE3 and apoE4. In the brain, apoE is produced mostly by astrocytes and transports cholesterol to neurons via apoE receptors. Among the gene alleles encoding the three isoforms, the APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease (AD), whereas APOE2 is protective. ApoE4 confers a gain of toxic function, a loss of neuroprotective function or a combination of both in AD pathogenesis. Given that therapeutic impacts of modulating apoE expression may be isoform-dependent, we sought to investigate the relationship between overexpressing apoE isoform and apoE-related functions in apoE-targeted replacement (TR) mice. Specifically, apoE isoform expression driven by the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter was built into an adeno-associated virus serotype 8 (AAV8) vector and injected into the ventricles of postnatal day 2 (P2) apoE3-TR or apoE4-TR mice. Upon confirmation of apoE isoform expression, effects on apoE lipidation and the levels of amyloid-β (Aβ) in the brain were assessed.

Results

AAV8-GFAP-apoE isoforms were specifically expressed in astrocytes throughout all brain regions, which led to overall increased apoE levels in the brain. Viral mediated overexpression of apoE4 in the apoE4-TR background increased poorly-lipidated apoE lipoprotein particles and decreased apoE-associated cholesterol in apoE4-TR mice. Conversely, apoE2 overexpression in apoE4-TR mice enhanced apoE lipidation and associated cholesterol. Furthermore, overexpression of apoE4 elevated the levels of endogenous Aβ, whereas apoE2 overexpression trended to lower endogenous Aβ.

Conclusions

Overexpression of apoE isoforms induces differential effects in the apoE4-TR background: apoE4 decreases apoE lipidation and enhances Aβ accumulation, whereas apoE2 has the opposite effects. Our findings suggest that increasing apoE2 in APOE4 carriers is a beneficial strategy to treat AD, whereas increasing apoE4 in APOE4 carriers is likely harmful. We have also established novel methods to express apoE isoforms in mouse brain to study apoE-related pathways in AD and related dementia.

【 授权许可】

   
2015 Hu et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150320051608231.pdf 2256KB PDF download
Figure 6. 60KB Image download
Figure 5. 19KB Image download
Figure 4. 25KB Image download
Figure 3. 45KB Image download
Figure 2. 51KB Image download
Figure 1. 251KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Thies W, Bleiler L, Alzheimer's A: 2013 Alzheimer’s disease facts and figures. Alzheimers Dement: J Alzheimers Assoc 2013, 9:208-45.
  • [2]Liu CC, Kanekiyo T, Xu H, Bu G: Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 2013, 9:106-18.
  • [3]Bu G: Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009, 10:333-44.
  • [4]Kim J, Basak JM, Holtzman DM: The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009, 63:287-303.
  • [5]Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al.: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261:921-3.
  • [6]Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, et al.: Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994, 7:180-4.
  • [7]Kanekiyo T, Xu H, Bu G: ApoE and Abeta in Alzheimer’s disease: accidental encounters or partners? Neuron 2014, 81:740-54.
  • [8]Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297:353-6.
  • [9]Selkoe DJ: The molecular pathology of Alzheimer’s disease. Neuron 1991, 6:487-98.
  • [10]Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al.: Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 2010, 330:1774.
  • [11]Reiman EM, Chen K, Liu X, Bandy D, Yu M, Lee W, et al.: Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 2009, 106:6820-5.
  • [12]Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, et al.: Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 2011, 3:89ra57.
  • [13]Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, et al.: Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci : Off J Soc Neurosci 2009, 29:6771-9.
  • [14]Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH, Mayo K, et al.: Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum Mol Genet 2012, 21:4558-71.
  • [15]Riddell DR, Zhou H, Atchison K, Warwick HK, Atkinson PJ, Jefferson J, et al.: Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J Neurosci : Off J Soc Neurosci 2008, 28:11445-53.
  • [16]Sullivan PM, Han B, Liu F, Mace BE, Ervin JF, Wu S, et al.: Reduced levels of human apoE4 protein in an animal model of cognitive impairment. Neurobiol Aging 2011, 32:791-801.
  • [17]Shinohara M, Petersen RC, Dickson DW, Bu G: Brain regional correlation of amyloid-beta with synapses and apolipoprotein E in non-demented individuals: potential mechanisms underlying regional vulnerability to amyloid-beta accumulation. Acta Neuropathol 2013, 125:535-47.
  • [18]Riddell DR, Zhou H, Comery TA, Kouranova E, Lo CF, Warwick HK, et al.: The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol Cell Neurosci 2007, 34:621-8.
  • [19]Vanmierlo T, Rutten K, Dederen J, Bloks VW, van Vark-van der Zee LC, Kuipers F, et al.: Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging 2011, 32:1262-72.
  • [20]Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, et al.: ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 2012, 335:1503-6.
  • [21]Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW: Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 1987, 917:148-61.
  • [22]Knouff C, Hinsdale ME, Mezdour H, Altenburg MK, Watanabe M, Quarfordt SH, et al.: Apo E structure determines VLDL clearance and atherosclerosis risk in mice. J Clin Invest 1999, 103:1579-86.
  • [23]Sullivan PM, Mezdour H, Aratani Y, Knouff C, Najib J, Reddick RL, et al.: Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 1997, 272:17972-80.
  • [24]Sullivan PM, Mezdour H, Quarfordt SH, Maeda N: Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2. J Clin Invest 1998, 102:130-5.
  • [25]Xu PT, Schmechel D, Rothrock-Christian T, Burkhart DS, Qiu HL, Popko B, et al.: Human apolipoprotein E2, E3, and E4 isoform-specific transgenic mice: human-like pattern of glial and neuronal immunoreactivity in central nervous system not observed in wild-type mice. Neurobiol Dis 1996, 3:229-45.
  • [26]Passini MA, Wolfe JH: Widespread gene delivery and structure-specific patterns of expression in the brain after intraventricular injections of neonatal mice with an adeno-associated virus vector. J Virol 2001, 75:12382-92.
  • [27]Kim JY, Ash RT, Ceballos-Diaz C, Levites Y, Golde TE, Smirnakis SM, et al.: Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits in vivo. Eur J Neurosci 2013, 37:1203-20.
  • [28]Chakrabarty P, Rosario A, Cruz P, Siemienski Z, Ceballos-Diaz C, Crosby K, et al.: Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain. PLoS One 2013, 8:e67680.
  • [29]Hanson AJ, Bayer-Carter JL, Green PS, Montine TJ, Wilkinson CW, Baker LD, et al.: Effect of apolipoprotein E genotype and diet on apolipoprotein E lipidation and amyloid peptides: randomized clinical trial. JAMA Neurol 2013, 70:972-80.
  • [30]Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T, Gan M, et al.: APOE4-specific changes in Abeta accumulation in a new transgenic mouse model of Alzheimer disease. J Biol Chem 2012, 287:41774-86.
  • [31]Tai LM, Bilousova T, Jungbauer L, Roeske SK, Youmans KL, Yu C, et al.: Levels of soluble apolipoprotein E/amyloid-beta (Abeta) complex are reduced and oligomeric Abeta increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. J Biol Chem 2013, 288:5914-26.
  • [32]Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, et al.: apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 2008, 118:4002-13.
  • [33]Roses AD: Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 1996, 47:387-400.
  • [34]Bertram L, Tanzi RE: The genetic epidemiology of neurodegenerative disease. J Clin Invest 2005, 115:1449-57.
  • [35]Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, et al.: Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2000, 97:2892-7.
  • [36]DeMattos RB, Cirrito JR, Parsadanian M, May PC, O'Dell MA, Taylor JW, et al.: ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 2004, 41:193-202.
  • [37]Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, et al.: Expression of human apolipoprotein E reduces amyloid-beta deposition in a mouse model of Alzheimer’s disease. J Clin Invest 1999, 103:R15-21.
  • [38]Fagan AM, Watson M, Parsadanian M, Bales KR, Paul SM, Holtzman DM: Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer’s disease. Neurobiol Dis 2002, 9:305-18.
  • [39]Hudry E, Dashkoff J, Roe AD, Takeda S, Koffie RM, Hashimoto T, et al.: Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci Transl Med 2013, 5:212ra161.
  • [40]Hatters DM, Peters-Libeu CA, Weisgraber KH: Apolipoprotein E structure: insights into function. Trends Biochem Sci 2006, 31:445-54.
  • [41]LaDu MJ, Lukens JR, Reardon CA, Getz GS: Association of human, rat, and rabbit apolipoprotein E with beta-amyloid. J Neurosci Res 1997, 49:9-18.
  • [42]Tai LM, Mehra S, Shete V, Estus S, Rebeck GW, Bu G, et al.: Soluble apoE/Abeta complex: mechanism and therapeutic target for APOE4-induced AD risk. Mol Neurodegener 2014, 9:2. BioMed Central Full Text
  • [43]Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, et al.: Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb blood Flow Metab : Off J Int Soc Cereb Blood Flow Metab 2007, 27:909-18.
  • [44]Donkin JJ, Stukas S, Hirsch-Reinshagen V, Namjoshi D, Wilkinson A, May S, et al.: ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice. J Biol Chem 2010, 285:34144-54.
  • [45]Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, et al.: ApoE promotes the proteolytic degradation of Abeta. Neuron 2008, 58:681-93.
  • [46]Hatters DM, Zhong N, Rutenber E, Weisgraber KH: Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils. J Mol Biol 2006, 361:932-44.
  • [47]Fitz NF, Cronican AA, Saleem M, Fauq AH, Chapman R, Lefterov I, et al.: Abca1 deficiency affects Alzheimer’s disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J Neurosci : Off J Soc Neurosci 2012, 32:13125-36.
  • [48]Zolotukhin S, Potter M, Zolotukhin I, Sakai Y, Loiler S, Fraites TJ Jr, et al.: Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 2002, 28:158-67.
  • [49]Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde TE, et al.: IFN-gamma promotes complement expression and attenuates amyloid plaque deposition in amyloid beta precursor protein transgenic mice. J Immunol 2010, 184:5333-43.
  • [50]Das P, Verbeeck C, Minter L, Chakrabarty P, Felsenstein K, Kukar T, et al.: Transient pharmacologic lowering of Abeta production prior to deposition results in sustained reduction of amyloid plaque pathology. Mol Neurodegener 2012, 7:39. BioMed Central Full Text
  文献评价指标  
  下载次数:15次 浏览次数:7次