Retrovirology | |
Disease progression despite protective HLA expression in an HIV-infected transmission pair | |
Philippa C Matthews7  Philip Goulder4  Todd Allen6  Paul Kellam1  Ellen Leitman4  Soren Buus2  Lynn Riddell5  Rebecca Batorsky6  Astrid Gall3  Jacqui Brener4  | |
[1] Division of Infection and Immunity, University College London, Gower Street, London WC1E 6BT, UK;Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark;Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK;Integrated Sexual Health Services, Northamptonshire Healthcare NHS Foundation Trust, Northampton General Hospital, Cliftonville, Northampton NN1 5BD, UK;Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA;Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK | |
关键词: Ultra-deep sequencing; Transmission pair; CRF01_AE Clade; CTL response; HLA; HIV-1; | |
Others : 1221137 DOI : 10.1186/s12977-015-0179-z |
|
received in 2015-04-15, accepted in 2015-06-02, 发布年份 2015 | |
【 摘 要 】
Background
The precise immune responses mediated by HLA class I molecules such as HLA-B*27:05 and HLA-B*57:01 that protect against HIV disease progression remain unclear. We studied a CRF01_AE clade HIV infected donor-recipient transmission pair in which the recipient expressed both HLA-B*27:05 and HLA-B*57:01.
Results
Within 4.5 years of diagnosis, the recipient had progressed to meet criteria for antiretroviral therapy initiation. We employed ultra-deep sequencing of the full-length virus genome in both donor and recipient as an unbiased approach by which to identify specific viral mutations selected in association with progression. Using a heat map method to highlight differences in the viral sequences between donor and recipient, we demonstrated that the majority of the recipient’s mutations outside of Env were within epitopes restricted by HLA-B*27:05 and HLA-B*57:01, including the well-studied Gag epitopes. The donor, who also expressed HLA alleles associated with disease protection, HLA-A*32:01/B*13:02/B*14:01, showed selection of mutations in parallel with disease progression within epitopes restricted by these protective alleles.
Conclusions
These studies of full-length viral sequences in a transmission pair, both of whom expressed protective HLA alleles but nevertheless failed to control viremia, are consistent with previous reports pointing to the critical role of Gag-specific CD8+ T cell responses restricted by protective HLA molecules in maintaining immune control of HIV infection. The transmission of subtype CRF01_AE clade infection may have contributed to accelerated disease progression in this pair as a result of clade-specific sequence differences in immunodominant epitopes.
【 授权许可】
2015 Brener et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150727090753413.pdf | 3399KB | download | |
Figure7. | 49KB | Image | download |
Figure6. | 71KB | Image | download |
Figure5. | 109KB | Image | download |
Figure4. | 105KB | Image | download |
Figure3. | 43KB | Image | download |
Figure2. | 47KB | Image | download |
Figure1. | 41KB | Image | download |
【 图 表 】
Figure1.
Figure2.
Figure3.
Figure4.
Figure5.
Figure6.
Figure7.
【 参考文献 】
- [1]Kaslow R, Carrington M, Apple R, Park L. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med. 1996; 2(4):405-411.
- [2]Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M et al.. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007; 317(5840):944-947.
- [3]Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S et al.. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004; 432(7018):769-775.
- [4]Leslie A, Matthews PC, Listgarten J, Carlson JM, Kadie C, Ndung’u T et al.. Additive contribution of HLA class I alleles in the immune control of HIV-1 infection. J Virol. 2010; 84(19):9879-9888.
- [5]Bartha I, Carlson JM, Brumme CJ, McLaren PJ, Brumme ZL, John M et al.. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. Elife. 2013; 2:e01123.
- [6]Fellay J, Ge D, Shianna KV, Colombo S, Ledergerber B, Cirulli ET et al.. Common genetic variation and the control of HIV-1 in humans. PLoS Genet. 2009; 5(12):e1000791.
- [7]Pereyra F, Jia X, McLaren P. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Sci NY. 2010; 330(6010):1551-1557.
- [8]Goulder PJR, Walker BD. HIV and HLA class I: an evolving relationship. Immunity. 2012; 37:426-440.
- [9]Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, Moodley E et al.. CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med. 2007; 13(1):46-53.
- [10]Matthews PC, Prendergast A, Leslie A, Crawford H, Payne R, Rousseau C et al.. Central role of reverting mutations in HLA associations with human immunodeficiency virus set point. J Virol. 2008; 82(17):8548-8559.
- [11]Sacha JB, Chung C, Rakasz EG, Spencer SP, Jonas AK, Bean AT et al.. Gag-specific CD8+ T lymphocytes recognize infected cells before aids-virus integration and viral protein expression. J Immunol. 2007; 178(5):2746-2754.
- [12]Crawford H, Lumm W, Leslie A, Schaefer M, Boeras D, Prado JG et al.. Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. J Exp Med. 2009; 206(4):909-921.
- [13]Miura T, Brockman MA, Schneidewind A, Lobritz M, Pereyra F, Rathod A et al.. HLA-B57/B*5801 human immunodeficiency virus type 1 elite controllers select for rare gag variants associated with reduced viral replication capacity and strong cytotoxic T-lymphocyte recognition. J Virol. 2009; 83(6):2743-2755.
- [14]Kloverpris HN, Stryhn A, Harndahl M, van der Stok M, Payne RP, Matthews PC et al.. HLA-B*57 Micropolymorphism shapes HLA allele-specific epitope immunogenicity, selection pressure, and HIV immune control. J Virol. 2012; 86(2):919-929.
- [15]Brockman MA, Brumme ZL, Brumme CJ, Miura T, Sela J, Rosato PC et al.. Early selection in Gag by protective HLA alleles contributes to reduced HIV-1 replication capacity that may be largely compensated for in chronic infection. J Virol. 2010; 84(22):11937-11949.
- [16]Boutwell CL, Rowley CF, Essex M. Reduced viral replication capacity of human immunodeficiency virus type 1 subtype C caused by cytotoxic-T-lymphocyte escape mutations in HLA-B57 epitopes of capsid protein. J Virol. 2009; 83(6):2460-2468.
- [17]Borghans JAM, Mølgaard A, de Boer RJ, Keşmir C. HLA alleles associated with slow progression to AIDS truly prefer to present HIV-1 p24. PLoS One. 2007; 2(9):e920.
- [18]Matthews PC, Leslie AJ, Katzourakis A, Crawford H, Payne R, Prendergast A et al.. HLA footprints on human immunodeficiency virus type 1 are associated with interclade polymorphisms and intraclade phylogenetic clustering. J Virol. 2009; 83(9):4605-4615.
- [19]McKinnon LR, Capina R, Peters H, Mendoza M, Kimani J, Wachihi C et al.. Clade-specific evolution mediated by HLA-B*57/5801 in human immunodeficiency virus type 1 clade A1 p24. J Virol. 2009; 83(23):12636-12642.
- [20]Kløverpris HN, Adland E, Koyanagi M, Stryhn A, Harndahl M, Brander C et al.. HIV Subtype Influences HLA-B*07:02-Associated HIV Disease Outcome. AIDS Res Hum Retroviruses. 2014; 30(5):468-475.
- [21]Deng K, Pertea M, Rongvaux A, Wang L, Durand CM, Ghiaur G et al.. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature. 2015; 517(7534):381-385.
- [22]Buonaguro L, Tornesello ML, Buonaguro FM. Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications. J Virol. 2007; 81(19):10209-10219.
- [23]Buranapraditkun S, Hempel U, Pitakpolrat P, Allgaier RL, Thantivorasit P, Lorenzen S-I et al.. A novel immunodominant CD8+ T cell response restricted by a common HLA-C allele targets a conserved region of Gag HIV-1 clade CRF01_AE infected Thais. PLoS One. 2011; 6(8):e23603.
- [24]Carlson JM, Brumme CJ, Martin E, Listgarten J, Brockman MA, Le AQ et al.. Correlates of protective cellular immunity revealed by analysis of population-level immune escape pathways in HIV-1. J Virol. 2012; 86(24):13202-13216.
- [25]Honeyborne I, Prendergast A, Pereyra F, Leslie A, Crawford H, Payne R et al.. Control of human immunodeficiency virus type 1 is associated with HLA-B*13 and targeting of multiple gag-specific CD8+ T-cell epitopes. J Virol. 2007; 81(7):3667-3672.
- [26]Goulder PJR, Phillips RE, Colbert RA, McAdam S, Ogg G, Nowak MA et al.. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med. 1997; 3(2):212-217.
- [27]Goulder PJ, Brander C, Tang Y, Tremblay C, Colbert RA, Addo MM et al.. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature. 2001; 412(6844):334-338.
- [28]Goulder PJ, Bunce M, Krausa P, McIntyre K, Crowley S, Morgan B et al.. Novel, cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. AIDS Res Hum Retroviruses. 1996; 12(18):1691-1698.
- [29]Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM, Feeney M et al.. HIV evolution: CTL escape mutation and reversion after transmission. Nat Med. 2004; 10(3):282-289.
- [30]Leslie A, Kavanagh D, Honeyborne I, Pfafferott K, Edwards C, Pillay T et al.. Transmission and accumulation of CTL escape variants drive negative associations between HIV polymorphisms and HLA. J Exp Med. 2005; 201(6):891-902.
- [31]Addo MM, Yu XG, Rathod A, Cohen D, Eldridge RL, Strick D et al.. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol. 2003; 77(3):2081-2092.
- [32]Payne RP, Kløverpris H, Sacha JB, Brumme Z, Brumme C, Buus S et al.. Efficacious early antiviral activity of HIV Gag- and Pol-specific HLA-B 2705-restricted CD8+ T cells. J Virol. 2010; 84(20):10543-10557.
- [33]Nixon DF, Townsend AR, Elvin JG, Rizza CR, Gallwey J, McMichael AJ. HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature. 1988; 336(6198):484-487.
- [34]Mori M, Wichukchinda N, Miyahara R, Rojanawiwat A, Pathipvanich P, Maekawa T et al.. HLA-B*35: 05 is a protective allele with a unique structure among HIV-1 CRF01_AE-infected Thais, in whom the B*57 frequency is low. AIDS. 2014; 28(7):959-967.
- [35]Gesprasert G, Wichukchinda N, Mori M, Shiino T, Auwanit W, Sriwanthana B et al.. HLA-associated immune pressure on Gag protein in CRF01_AE-infected individuals and its association with plasma viral load. PLoS One. 2010; 5(6):e11179.
- [36]Allen TM, Altfeld M, Geer SC, Kalife ET, Moore C, O’Sullivan K et al.. Selective escape from CD8+ T-Cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol. 2005; 79(21):13239-13249.
- [37]Martinez-picado J, Prado JG, Fry EE, Pfafferott K, Leslie A, Chetty S et al.. Fitness cost of escape mutations in p24 gag in association with control of human immunodeficiency virus type 1. J Virol. 2006; 80(7):3617-3623.
- [38]Almeida JR, Price DA, Papagno L, Arkoub ZA, Sauce D, Bornstein E et al.. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J Exp Med. 2007; 204(10):2473-2485.
- [39]Iglesias MC, Almeida JR, Fastenackels S, van Bockel DJ, Hashimoto M, Venturi V et al.. Escape from highly effective public CD8+ T-cell clonotypes by HIV. Blood. 2011; 6:2138-2149.
- [40]Ladell K, Hashimoto M, Iglesias MC, Wilmann PG, McLaren JE, Gras S et al.. A molecular basis for the control of preimmune escape variants by HIV-specific CD8+ T cells. Immunity. 2013; 38(3):425-436.
- [41]Cano P, Klitz W, Mack SJ, Maiers M, Marsh SGE, Noreen H et al.. Common and well-documented HLA alleles: report of the Ad-Hoc committee of the american society for histocompatiblity and immunogenetics. Hum Immunol. 2007; 68(5):392-417.
- [42]Gall A, Ferns B, Morris C, Watson S, Cotten M, Robinson M et al.. Universal amplification, next-generation sequencing, and assembly of HIV-1 genomes. J Clin Microbiol. 2012; 50(12):3838-3844.
- [43]Gall A, Morris C, Kellam P, Berry N. Complete genome sequence of the who international standard for HIV-1 RNA determined by deep sequencing. Genome Announc. 2014; 2(1):e01254-13.
- [44]Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al.. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008; 456(7218):53-59.
- [45]Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al.. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19(5):455-477.
- [46]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C et al.. Versatile and open software for comparing large genomes. Genome Biol. 2004; 5(2):R12. BioMed Central Full Text
- [47]Yang X, Charlebois P, Gnerre S, Coole MG, Lennon NJ, Levin JZ et al.. De novo assembly of highly diverse viral populations. BMC Genom. 2012; 13:475. BioMed Central Full Text
- [48]Charlebois P, Yang X, Newman R, Henn M, Zody M (2012) V-FAT: a post-assembly pipeline for the finishing and annotation of viral genomes. http://www. broadinstitute.org/scientific-community/science/projects/viral-genomics/v-fat webcite
- [49]Lee W-P, Stromberg MP, Ward A, Stewart C, Garrison EP, Marth GT. MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping. PLoS One. 2014; 9(3):e90581.
- [50]Yang X, Charlebois P, Macalalad A, Henn MR, Zody MC. V-Phaser 2: variant inference for viral populations. BMC Genom. 2013; 14:674. BioMed Central Full Text
- [51]Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, Macalalad AR et al.. Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. PLoS Pathog. 2012; 8(3):e1002529.
- [52]Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S et al.. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature. 2004; 432(7018):769-775.
- [53]Llano A, Williams A, Overa A, Silva-Arrieta S, Brander C (2013) Best-characterized HIV-1 CTL epitopes: the 2013 update. In: Yusim K, Korber B, Brander C, Barouch D, de Boer R, Haynes BF, Koup R, Moore JP, Walker BD (eds) HIV molecular immunology. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM. LA-UR 13-27758, pp 3–19
- [54]Larsen ME, Kloverpris H, Stryhn A, Koofhethile CK, Sims S, Ndung’U T et al.. HLArestrictor-a tool for patient-specific predictions of HLA restriction elements and optimal epitopes within peptides. Immunogenetics. 2011; 63:43-55.
- [55]Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008; 25:1253-1256.
- [56]Pineda-Peña AC, Faria NR, Imbrechts S, Libin P, Abecasis AB, Deforche K et al.. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other tools. Infect Genet Evol. 2013; 19(126):337-348.
- [57]Leisner C, Loeth N, Lamberth K, Justesen S, Sylvester-Hvid C, Schmidt EG et al.. One-pot, mix-and-read peptide-MHC tetramers. PLoS One. 2008; 3(2):e1678.
- [58]Williams I, Churchill D, Anderson J, Boffito M, Bower M, Cairns G et al.. British HIV Association guidelines for the treatment of HIV-1-positive adults with antiretroviral therapy 2012 (Updated November 2013. All changed text is cast in yellow highlight.). HIV Med. 2014; 15 Suppl 1:1-85.