期刊论文详细信息
Molecular Pain
Novel cytogenic and neurovascular niches due to blood–brain barrier compromise in the chronic pain brain
J. David Clark1  Maral Tajerian1 
[1] Palo Alto Institute of Research and Education, Palo Alto, CA, USA
关键词: Pain-related co-morbidities;    Pain-related brain plasticity;    Neovascularization;    Neurogenesis;    Neuroinflammation;    Chronic pain;    Blood–brain-barrier;   
Others  :  1229050
DOI  :  10.1186/s12990-015-0066-6
 received in 2015-08-26, accepted in 2015-10-01,  发布年份 2015
PDF
【 摘 要 】

Background

The mechanisms by which painful injuries are linked to the multitude of pain-related comorbidities and neuroplastic changes in the brain remain poorly understood. Here we propose a model that relies on epi-neuronal communication through the vascular system to effect various brain structures. Specifically, we hypothesize that the differential vulnerability of the blood–brain barrier (BBB) in different brain regions is associated with region-specific neuroplastic and neurovascular changes that are in turn associated with particular pain-related comorbidities.

Presentation of the hypothesis

We will present our hypothesis by focusing on two main points: (A) chronic pain (CP) is associated with differential BBB compromise. (B) Circulating mediators leaking through the BBB create cytogenic and neovascular niches associated with pain-related co-morbidities.

Testing the hypothesis

Pre-clinically, our hypothesis can be tested by observing, in parallel, BBB compromise, (neo)vascularization, neurogenesis, and their co-localization in animal pain models using imaging, microscopy, biochemical and other tools. Furthermore, the BBB can be experimentally damaged in specific brain regions, and the consequences of those lesions studied on nociception and associated comorbidities. Recently developed imaging techniques allow the analysis of blood brain barrier integrity in patients providing a route for translation of the laboratory findings. Though perhaps more limited, post-mortem examination of brains with available pain histories constitutes a second approach to addressing this hypothesis.

Implications of the hypothesis

Understanding changes in BBB permeability in chronic pain conditions has clear implications both for understanding the pathogenesis of chronic pain and for the design of novel treatments to prevent chronic pain and its consequences. More broadly, this hypothesis may help us to understand how peripheral injuries impact the brain via mechanisms other than commonly studied efferent sensory pathways.

【 授权许可】

   
2015 Tajerian and Clark.

【 预 览 】
附件列表
Files Size Format View
20151022042335498.pdf 974KB PDF download
Fig.2. 9KB Image download
Fig.1. 38KB Image download
【 图 表 】

Fig.1.

Fig.2.

【 参考文献 】
  • [1]Sharp J, Keefe B: Psychiatry in chronic pain: a review and update. Curr Psychiatry Rep 2005, 7:213-219.
  • [2]Seminowicz DA, Wideman TH, Naso L, Hatami-Khoroushahi Z, Fallatah S, Ware MA, Jarzem P, Bushnell MC, Shir Y, Ouellet JA, Stone LS: Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J Neurosci Off J Soc Neurosci 2011, 31:7540-7550.
  • [3]Tajerian M, Leu D, Zou Y, Sahbaie P, Li W, Khan H, Hsu V, Kingery W, Huang TT, Becerra L, Clark JD: Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology 2014, 121:852-865.
  • [4]Tajerian M, Alvarado S, Millecamps M, Vachon P, Crosby C, Bushnell MC, Szyf M, Stone LS: Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex. PLoS One 2013, 8:e55259.
  • [5]Chen T, Koga K, Descalzi G, Qiu S, Wang J, Zhang LS, Zhang ZJ, He XB, Qin X, Xu FQ, et al.: Postsynaptic potentiation of corticospinal projecting neurons in the anterior cingulate cortex after nerve injury. Mol Pain 2014, 10:33. BioMed Central Full Text
  • [6]Baliki MN, Apkarian AV: Nociception, pain, negative moods, and behavior selection. Neuron 2015, 87:474-491.
  • [7]Chodobski A, Zink BJ, Szmydynger-Chodobska J: Blood–brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2011, 2:492-516.
  • [8]Sanchez-del-Rio M, Reuter U: Migraine aura: new information on underlying mechanisms. Curr Opin Neurol 2004, 17:289-293.
  • [9]Mogi M, Horiuchi M: Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ J Off J Jpn Circ Soc 2011, 75:1042-1048.
  • [10]Huber JD, Witt KA, Hom S, Egleton RD, Mark KS, Davis TP: Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 2001, 280:H1241-H1248.
  • [11]Brooks TA, Hawkins BT, Huber JD, Egleton RD, Davis TP: Chronic inflammatory pain leads to increased blood–brain barrier permeability and tight junction protein alterations. Am J Physiol Heart Circ Physiol 2005, 289:H738-H743.
  • [12]Huber JD, Hau VS, Borg L, Campos CR, Egleton RD, Davis TP: Blood–brain barrier tight junctions are altered during a 72-h exposure to lambda-carrageenan-induced inflammatory pain. Am J Physiol Heart Circ Physiol 2002, 283:H1531-H1537.
  • [13]Huber JD, Campos CR, Mark KS, Davis TP: Alterations in blood–brain barrier ICAM-1 expression and brain microglial activation after lambda-carrageenan-induced inflammatory pain. Am J Physiol Heart Circ Physiol 2006, 290:H732-H740.
  • [14]Rittner HL, Brack A, Stein C: Pain and the immune system. Br J Anaesth 2008, 101:40-44.
  • [15]Rodriguez PL, Jiang S, Fu Y, Avraham S, Avraham HK: The proinflammatory peptide substance P promotes blood-brain barrier breaching by breast cancer cells through changes in microvascular endothelial cell tight junctions. Int J Cancer 2014, 134:1034-1044.
  • [16]Alvarez JI, Katayama T, Prat A: Glial influence on the blood brain barrier. Glia 2013, 61:1939-1958.
  • [17]Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T, Takeuchi H, Suzumura A: Interleukin-1beta induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS One 2014, 9:e110024.
  • [18]Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, Hill E, Hsu S, Izquierdo-Garcia D, Ji RR, et al.: Evidence for brain glial activation in chronic pain patients. Brain J Neurol 2015, 138:604-615.
  • [19]Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ: Structure and function of the blood-brain barrier. Neurobiol Dis 2010, 37:13-25.
  • [20]He HJ, Wang Y, Le Y, Duan KM, Yan XB, Liao Q, Liao Y, Tong JB, Terrando N, Ouyang W: Surgery upregulates high mobility group box-1 and disrupts the blood–brain barrier causing cognitive dysfunction in aged rats. CNS Neurosci Ther 2012, 18:994-1002.
  • [21]Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C, Feldmann M, Jonsson Fagerlund M, Charo IF, Akassoglou K, Maze M: Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol 2011, 70:986-995.
  • [22]Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M: Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 2010, 68:360-368.
  • [23]Dirckx M, Schreurs MW, de Mos M, Stronks DL, Huygen FJ: The prevalence of autoantibodies in complex regional pain syndrome type I. Mediat Inflamm 2015, 2015:718201.
  • [24]Capossela S, Schlafli P, Bertolo A, Janner T, Stadler BM, Potzel T, Baur M, Stoyanov JV: Degenerated human intervertebral discs contain autoantibodies against extracellular matrix proteins. Eur Cells Mater 2014, 27:251-263.
  • [25]Kelly-Worden M, Hammer L, Gebhard R, Schrader L, Griffin M, Cooper D: Anti-nuclear antibodies positive serum from systemic lupus erythematosus patients promotes cardiovascular manifestations and the presence of human antibody in the brain. J Pharm Bioallied Sci 2014, 6:198-204.
  • [26]Zerche M, Weissenborn K, Ott C, Dere E, Asif AR, Worthmann H, Hassouna I, Rentzsch K, Tryc AB, Dahm L, et al.: Preexisting serum autoantibodies against the NMDAR subunit NR1 modulate evolution of lesion size in acute ischemic stroke. Stroke J Cereb Circ 2015, 46:1180-1186.
  • [27]Leslie AT, Akers KG, Martinez-Canabal A, Mello LE, Covolan L, Guinsburg R: Neonatal inflammatory pain increases hippocampal neurogenesis in rat pups. Neurosci Lett 2011, 501:78-82.
  • [28]Apkarian AV, Mutso AA, Centeno MV, Kan L, Wu M, Levinstein M, Banisadr G, Gobeske KT, Miller RJ, Radulovic J, et al.: Role of adult hippocampal neurogenesis in persistent pain. Pain. 2015.
  • [29]Stolp HB, Molnar Z: Neurogenic niches in the brain: help and hindrance of the barrier systems. Front Neurosci 2015, 9:20.
  • [30]Yuan TF, Liang YX, Tay D, So KF, Ellis-Behnke R: Specialized vasculature in the rostral migratory stream as a neurogenic niche and scaffold for neuroblast migration. Cell Transplant 2015, 24:377-390.
  • [31]Kole K: Experience dependent plasticity of the Neurovasculature. J Neurophysiol 2014, 114:2077-9.
  • [32]Kerr AL, Steuer EL, Pochtarev V, Swain RA: Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience 2010, 171:214-226.
  • [33]Tanifum EA, Starosolski ZA, Fowler SW, Jankowsky JL, Annapragada AV: Cerebral vascular leak in a mouse model of amyloid neuropathology. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 2014, 34:1646-1654.
  • [34]Alvarado S, Tajerian M, Millecamps M, Suderman M, Stone LS, Szyf M: Peripheral nerve injury is accompanied by chronic transcriptome-wide changes in the mouse prefrontal cortex. Mol Pain 2013, 9:21. BioMed Central Full Text
  • [35]Cotte Y, Toy F, Jourdain P, Pavillon N, Boss D, Magistretti P, Marquet P, Depeursinge C: Marker-free phase nanoscopy. Nat Photonics 2013, 7:113-117.
  • [36]Miller DS, Cannon RE: Signaling pathways that regulate basal ABC transporter activity at the blood- brain barrier. Curr Pharm Des 2014, 20:1463-1471.
  • [37]Ernst C, Nagy C, Kim S, Yang JP, Deng X, Hellstrom IC, Choi KH, Gershenfeld H, Meaney MJ, Turecki G: Dysfunction of astrocyte connexins 30 and 43 in dorsal lateral prefrontal cortex of suicide completers. Biol Psychiatry 2011, 70:312-319.
  • [38]Ezan P, Andre P, Cisternino S, Saubamea B, Boulay AC, Doutremer S, Thomas MA, Quenech’du N, Giaume C, Cohen-Salmon M: Deletion of astroglial connexins weakens the blood-brain barrier. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 2012, 32:1457-1467.
  • [39]Heye AK, Culling RD, Valdes Hernandez Mdel C, Thrippleton MJ, Wardlaw JM: Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. NeuroImage Clin 2014, 6:262-274.
  • [40]Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, et al.: Structural and functional features of central nervous system lymphatic vessels. Nature. 2015, 523:337-41.
  文献评价指标  
  下载次数:36次 浏览次数:11次