期刊论文详细信息
Virology Journal
Bacteriophages and their implications on future biotechnology: a review
Ishtiaq Qadri1  Saadia Andleeb1  Maha Nadeem Akhtar1  Waqas Nasir Chaudhry1  Irshad Ul Haq1 
[1] NUST Center of Virology & Immunology (NCVI), National University of Sciences & Technology (NUST), H-12, Islamabad 44000, Pakistan
关键词: Biocontrol;    Vaccine;    Antibiotics;    Phage therapy;    Bacteriophage;   
Others  :  1155283
DOI  :  10.1186/1743-422X-9-9
 received in 2011-06-11, accepted in 2012-01-10,  发布年份 2012
PDF
【 摘 要 】

Recently it has been recognized that bacteriophages, the natural predators of bacteria can be used efficiently in modern biotechnology. They have been proposed as alternatives to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as biocontrol agents in agriculture and petroleum industry. Moreover phages are used as vehicles for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as display system for many proteins and antibodies. Bacteriophages are diverse group of viruses which are easily manipulated and therefore they have potential uses in biotechnology, research, and therapeutics. The aim of this review article is to enable the wide range of researchers, scientists, and biotechnologist who are putting phages into practice, to accelerate the progress and development in the field of biotechnology.

【 授权许可】

   
2012 Haq et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407113242711.pdf 387KB PDF download
Figure 2. 95KB Image download
Figure 1. 112KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Clark JR, March JB: Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 2006, 24(5):212-218.
  • [2]Ackerman HW: Tailed bacteriophages: the Caudovirales. Adv Virus Res 1998, 51:135-201.
  • [3]Inal JM: Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp 2003, 51(4):237-244.
  • [4]Summers WC: Bacteriophage discovered. In Felix d'Herelle and the Origins of Molecular Biology. Yale University Press; 1999:47-59.
  • [5]Hermoso JA, Garcia JL, Garcia P: Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol 2007, 10(5):461-472.
  • [6]D'Herelle F, Malone RH, Lahiri MN: Studies on Asiatic cholera. Indian Med Res Mem 1927, 14:1.
  • [7]Sulakvelidze A, Kutter E: Bacteriophage therapy in humans. In Bacteriophages: Biology and Applications. Edited by Kutter E, Sulakvelidze A. CRC Press; 2005:381-436.
  • [8]Smith HW, Huggins MB: Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 1982, 128(2):307-318.
  • [9]Summers WC: Bacteriophage therapy. Annu Rev Microbiol 2001, 55:437-451.
  • [10]Hausler T: Viruses vs. Superbugs: A Solution to the Antibiotics Crisis?. London: Macmillan; 2007.
  • [11]Sulakvelidze A, Alavidze Z, Morris JG Jr: Bacteriophage therapy. Antimicrob Agents Chemother 2001, 45(3):649-659.
  • [12]Dabrowska K, Switała-Jelen K, Opolski A, Weber-Dabrowska B, Gorski A: Bacteriophage penetration in vertebrates. J Appl Microbiol 2005, 98(1):7-13.
  • [13]Clark JR, March JB: Bacterial viruses as human vaccines? Expert Rev Vaccines 2004, 3(4):463-476.
  • [14]Lo' pez R, Garcı'a E, Garcı'a P: Enzymes for anti-infective therapy: phage lysins. Drug Discov Today Ther Strateg 2004, 1:469-474.
  • [15]Fischetti VA: Bacteriophage lytic enzymes: novel anti infectives. Trends Microbiol 2005, 13(10):491-496.
  • [16]Borysowski J, Weber-Dabrowska B, Gorski A: Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med 2006, 231(4):366-377.
  • [17]Westwater C, Kasman LM, Schofield DA, Werner PA, Dolan JW, Schmidt MG, et al.: Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother 2003, 47(4):1301-1307.
  • [18]Smith GP: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228(4705):1315-1317.
  • [19]Sidhu SS: Phage display in pharmaceutical biotechnology. Curr Opin Biotechnol 2000, 11(6):610-616.
  • [20]Benhar I: Biotechnological applications of phage and cell display. Biotechnol Adv 2001, 19(1):1-33.
  • [21]Willats WG: Phage display: practicalities and prospects. Plant Mol Biol 2002, 50(6):837-854.
  • [22]Petrenko VA, Vodyanoy VJ: Phage display for detection of biological threat agents. J Microbiol Methods 2003, 53(2):253-262.
  • [23]Fernandez-Gacio A, Uguen M, Fastrez J: Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol 2003, 21(9):408-414.
  • [24]Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR: Making antibodies by phage display technology. Annu Rev Immunol 1994, 12:433-455.
  • [25]Dickerson TJ, Kaufmann GF, Janda KD: Bacteriophage-mediated protein delivery into the central nervous system and its application in immunopharmacotherapy. Expert Opin Biol Ther 2005, 5(6):773-781.
  • [26]Watson BB, Eveland WC: The application of the phage fluorescent antiphage staining system in the specific identification of Listeria monocytogenes. I. Species specificity and immunofluorescent sensitivity of Listeria monocytogenes phage observed in smear preparations. J Infect Dis 1965, 115(4):363-369.
  • [27]Kodikara CP, Crew HH, Stewart GS: Near on-line detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiol Lett 1991, 67(3):261-265.
  • [28]Funatsu T, Taniyama T, Tajima T, Tadakuma H, Namiki H: Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol Immunol 2002, 46(6):365-369.
  • [29]Hennes KP, Suttle CA, Chan AM: Fluorescently labeled virus probes show that natural virus populations can control the structure of marine microbial communities. Appl Environ Microbiol 1995, 61(10):3623-3627.
  • [30]Goodridge L, Chen J, Griffiths M: Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157:H7. Appl Environ Microbiol 1999, 65:1397-1404.
  • [31]Corbitt AJ, Bennion N, Forsythe SJ: Adenylate kinase amplification of ATP bioluminescence for hygiene monitoring in the food and beverage industry. Lett Appl Microbiol 2000, 30(6):443-447.
  • [32]Stewart GSAB, Smith T, Denyer S: Genetic engineering for bioluminescent bacteria. Food Sci Technol Today 1989, 3:19-22.
  • [33]Barry MA, Dower WJ, Johnston SA: Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med 1996, 2(3):299-305.
  • [34]Dunn IS: Mammalian cell binding and transfection mediated by surface-modified bacteriophage lambda. Biochimie 1996, 78(10):856-861.
  • [35]Larocca D, Witte A, Johnson W, Pierce GF, Baird A: Targeting bacteriophage to mammalian cell surface receptors for gene delivery. Hum Gene Ther 1998, 9(16):2393-2399.
  • [36]Larocca D, Kassner PD, Witte A, Ladner RC, Pierce GF, Baird A: Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J 1999, 13(6):727-734.
  • [37]Hart SL, Knight AM, Harbottle RP, Mistry A, Hunger HD, Cutler DF, et al.: Cell binding and internalization by filamentous phage; displaying a cyclic Arg-Gly-Asp-containing peptide. J Biol Chem 1994, 269(17):12468-12474.
  • [38]Sperinde JJ, Choi SJ, Szoka FC Jr: Phage display selection of a peptide DNaseII inhibitor that enhances gene delivery. J Gene Med 2001, 3(2):101-108.
  • [39]Piersanti S, Cherubini G, Martina Y, Salone B, Avitabile D, Grosso F, et al.: Mammalian cell transduction and internalization properties of lambda phages displaying the full-length adenoviral penton base or its central domain. J Mol Med 2004, 82(7):467-476.
  • [40]Nakanishi M, Eguchi A, Akuta T, Nagoshi E, Fujita S, Okabe J, et al.: Basic peptides as functional components of non-viral gene transfer vehicles. Curr Protein Pept Sci 2003, 4(2):141-150.
  • [41]Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E: Molecular heterogeneity of the vascular endothelium; revealed by in vivo phage display. J Clin Invest 1998, 102(7):430-437.
  • [42]Ivanenkov VV, Menon AG: Peptide-mediated transcytosis of phage display vectors in MDCK cells. Biochem Biophys Res Commun 2000, 276(1):251-257.
  • [43]Folgori A, Tafi R, Meola A, Felici F, Galfre G, Cortese R, et al.: A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J 1994, 13(9):2236-2243.
  • [44]Phalipon A, Folgori A, Arondel J, Sgaramella G, Fortugno P, Cortese R, Sansonetti PJ, Felici F: Induction of anti-carbohydrate antibodies by phage library-selected peptide mimics. Eur J Immunol 1997, 27(10):2620-2625.
  • [45]Meola A, Delmastro P, Monaci P, Luzzago A, Nicosia A, Felici F, Cortese R, Galfrè G: Derivation of vaccines from mimotopes. Immunologic properties of human hepatitis B virus surface antigen mimotopes displayed on filamentous phage. J Immunol 1995, 154(7):3162-3172.
  • [46]Irving MB, Pan O, Scott JK: Random-peptide libraries and antigen fragment libraries for epitope mapping and the development of vaccines and diagnostics. Curr Opin Chem Biol 2001, 5(3):314-324.
  • [47]Wang LF, Yu M: Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Curr Drug Targets 2004, 5(1):1-15.
  • [48]Molenaar TJ, Michon I, de Haas SA, Van Berkel TJ, Kuiper J, Biessen EA: Uptake and processing of modified bacteriophage M13 in mice: implications for phage display. Virology 2002, 293(1):182-191.
  • [49]Kleinschmidt WJ, Douthart RJ, Murphy EB: Interferon production by T4 coliphage. Nature 1970, 228(5266):27-30.
  • [50]March JB, Clark JR, Jepson CD: Genetic immunization against hepatitis B using whole bacteriophage lambda particles. Vaccine 2004, 22(13-14):1666-1671.
  • [51]Jepson CD, March JB: Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine 2004, 22(19):2413-2419.
  • [52]Clark JR, March JB: Bacteriophage-mediated nucleic acid immunization. FEMS Immunol Med Microbiol 2004, 40(1):21-26.
  • [53]Curiel TJ, Morris C, Brumlik M, Landry SJ, Finstad K, Nelson A, et al.: Peptides identified through phage display direct immunogenic antigen to dendritic cells. J Immunol 2004, 172(12):7425-7431.
  • [54]McGuire MJ, et al.: A library-selected, Langerhans cell targeting peptide enhances an immune response. DNA Cell Biol 2004, 23(11):742-752.
  • [55]Flaherty JE, Harbaugh BK, Jones JB, Somodi GC, Jackson LE: H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortSci 2001, 36:98-100.
  • [56]Munsch P, Olivier JM: Biocontrol of bacterial blotch of the cultivated mushroom with lytic phages: some practical considerations. Science and cultivation of edible fungi, 2. Proceedings of the 14th International Congress 1995, 595-602.
  • [57]Gill J, Abedon ST: Bacteriophage ecology and plants. APSnet Feature. [http:/ / www.apsnet.org/ publications/ apsnetfeatures/ Pages/ BacteriophageEcology.aspx] webcite
  • [58]Sakaguchi I, Shinshima K, Kawaratani K, Sugai O: Control of microbiofouling using bacteriophage 2. Detection of phages and fundamental study of their lytic effect on fouling bacteria. Denryoku Chuo Kenkyusho Hokoku 1989, 1-32.
  • [59]García P, Rodríguez L, Rodríguez A, Martínez B: Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci Technol 2010, 21:373-382.
  • [60]Goode D, Allen VM, Barrow PA: Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 2003, 69(8):5032-5036.
  • [61]Modi R, Hirvi Y, Hill A, Griffiths MW: Effect of phage on survival of Salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J Food Prot 2001, 64(7):927-933.
  • [62]Dykes GA, Moorhead SM: Combined antimicrobial effect of nisin and a listeriophage against Listeria monocytogenes in broth but not in buffer or on raw beef. Int J Food Microbiol 2002, 73(1):71-81.
  • [63]Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Saftner R, Sulakvelidze A: Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 2003, 69(8):4519-4526.
  • [64]Greer GG, Dilts BD: Control of Brochothrix thermosphacta spoilage of pork adipose tissue using bacteriophages. J Food Prot 2002, 65(5):861-863.
  文献评价指标  
  下载次数:29次 浏览次数:26次