期刊论文详细信息
Retrovirology
HIV-1 IN/Pol recruits LEDGF/p75 into viral particles
Zeger Debyser2  Frauke Christ2  Rik Gijsbers2  Norbert Bannert1  Jan Mast4  Jan De Rijck2  Igor Paron5  Paul Proost6  Jonas Demeulemeester2  Sofie Vets2  Rik Schrijvers2  Caroline Weydert2  Belete Ayele Desimmie3 
[1] Robert Koch Institute, Centre for HIV and Retrovirology, Berlin, Germany;Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Leuven, Flanders, Belgium;Present address: Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA;Veterinary and Agrochemical Research Centre CODA-CERVA, Brussels, Belgium;Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, D-82152, Germany;KU Leuven, Laboratory of Molecular Immunology, Rega Institute, Leuven, Flanders, Belgium
关键词: Assembly;    Protease cleavage sites;    Protease;    LEDGF/p75;    Integrase;   
Others  :  1162857
DOI  :  10.1186/s12977-014-0134-4
 received in 2014-10-10, accepted in 2014-12-22,  发布年份 2015
PDF
【 摘 要 】

Background

The dynamic interaction between HIV and its host governs the replication of the virus and the study of the virus-host interplay is key to understand the viral lifecycle. The host factor lens epithelium-derived growth factor (LEDGF/p75) tethers the HIV preintegration complex to the chromatin through a direct interaction with integrase (IN). Small molecules that bind the LEDGF/p75 binding pocket of the HIV IN dimer (LEDGINs) block HIV replication through a multimodal mechanism impacting early and late stage replication including HIV maturation. Furthermore, LEDGF/p75 has been identified as a Pol interaction partner. This raised the question whether LEDGF/p75 besides acting as a molecular tether in the target cell, also affects late steps of HIV replication.

Results

LEDGF/p75 is recruited into HIV-1 particles through direct interaction with the viral IN (or Pol polyprotein) and is a substrate for HIV-1 protease. Incubation in the presence of HIV-1 protease inhibitors resulted in detection of full-length LEDGF/p75 in purified viral particles. We also demonstrate that inhibition of LEDGF/p75-IN interaction by specific mutants or LEDGINs precludes incorporation of LEDGF/p75 in virions, underscoring the specificity of the uptake. LEDGF/p75 depletion did however not result in altered LEDGIN potency.

Conclusion

Together, these results provide evidence for an IN/Pol mediated uptake of LEDGF/p75 in viral particles and a specific cleavage by HIV protease. Understanding of the possible role of LEDGF/p75 or its cleavage fragments in the viral particle awaits further experimentation.

【 授权许可】

   
2015 Desimmie et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150413082155274.pdf 3369KB PDF download
Figure 5. 60KB Image download
Figure 4. 57KB Image download
Figure 3. 50KB Image download
Figure 2. 99KB Image download
Figure 1. 80KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, et al.: HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 2003, 278:372-81.
  • [2]Llano M, Saenz DT, Meehan A, Wongthida P, Peretz M, Walker WH, et al.: An essential role for LEDGF/p75 in HIV integration. Science 2006, 314:461-4.
  • [3]Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E, Debyser Z, et al.: LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 2003, 278:33528-39.
  • [4]McNeely M, Hendrix J, Busschots K, Boons E, Deleersnijder A, Gerard M, et al.: In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol 2011, 410:811-30.
  • [5]Vandekerckhove L, Christ F, Van Maele B, De Rijck J, Gijsbers R, Van den Haute C, et al.: Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J Virol 2006, 80:1886-96.
  • [6]Ge H, Si Y, Roeder RG: Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 1998, 17:6723-9.
  • [7]Yokoyama A, Cleary ML: Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 2008, 14:36-46.
  • [8]Daugaard M, Baude A, Fugger K, Povlsen LK, Beck H, Sorensen CS, et al.: LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol 2012, 19:803-10.
  • [9]Bartholomeeusen K, De Rijck J, Busschots K, Desender L, Gijsbers R, Emiliani S, et al.: Differential interaction of HIV-1 integrase and JPO2 with the C terminus of LEDGF/p75. J Mol Biol 2007, 372:407-21.
  • [10]Maertens GN, Cherepanov P, Engelman A: Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin. J Cell Sci 2006, 119:2563-71.
  • [11]Shun MC, Botbol Y, Li X, Di Nunzio F, Daigle JE, Yan N, et al.: Identification and characterization of PWWP domain residues critical for LEDGF/p75 chromatin binding and human immunodeficiency virus type 1 infectivity. J Virol 2008, 82:11555-67.
  • [12]Gijsbers R, Vets S, De Rijck J, Ocwieja KE, Ronen K, Malani N, et al.: Role of the PWWP domain of lens epithelium-derived growth factor (LEDGF)/p75 cofactor in lentiviral integration targeting. J Biol Chem 2011, 286:41812-25.
  • [13]Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA: Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 2012, 8:e1002717.
  • [14]Cherepanov P, Devroe E, Silver PA, Engelman A: Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J Biol Chem 2004, 279:48883-92.
  • [15]Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P, et al.: LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev 2007, 21:1767-78.
  • [16]Hendrix J, Gijsbers R, De Rijck J, Voet A, Hotta J, McNeely M, et al.: The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering. Nucleic Acids Res 2011, 39:1310-25.
  • [17]Schrijvers R, De Rijck J, Demeulemeester J, Adachi N, Vets S, Ronen K, et al.: LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog 2012, 8:e1002558.
  • [18]Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, et al.: A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 2005, 11:1287-9.
  • [19]Schrijvers R, Vets S, De Rijck J, Malani N, Bushman FD, Debyser Z, et al.: HRP-2 determines HIV-1 integration site selection in LEDGF/p75 depleted cells. Retrovirology 2012, 9:84. BioMed Central Full Text
  • [20]Wang H, Jurado KA, Wu XL, Shun MC, Li X, Ferris AL, et al.: HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor. Nucleic Acids Res 2012, 40:11518-30.
  • [21]Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, et al.: Global landscape of HIV-human protein complexes. Nature 2012, 481:365-70.
  • [22]Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, et al.: Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 2010, 6:442-8.
  • [23]Kessl JJ, Jena N, Koh Y, Taskent-Sezgin H, Slaughter A, Feng L, et al.: Multimode, Cooperative Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors. J Biol Chem 2012, 287:16801-11.
  • [24]Le Rouzic E, Bonnard D, Chasset S, Bruneau JM, Chevreuil F, Le Strat F, et al.: Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology 2013, 10:144. BioMed Central Full Text
  • [25]Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, et al.: New Class of HIV-1 Integrase (IN) Inhibitors with a Dual Mode of Action. J Biol Chem 2012, 287:21189-203.
  • [26]Sharma A, Slaughter A, Jena N, Feng L, Kessl JJ, Fadel HJ, et al.: A new class of multimerization selective inhibitors of HIV-1 integrase. PLoS Pathog 2014, 10:e1004171.
  • [27]Gupta K, Brady T, Dyer BM, Malani N, Hwang Y, Male F, et al.: Allosteric inhibition of human immunodeficiency virus integrase: Late block during viral replication and abnormal multimerization involving specific protein domains. J Biol Chem 2014, 289:20477-88.
  • [28]Christ F, Shaw S, Demeulemeester J, Desimmie BA, Marchand A, Butler S, et al. Small molecule inhibitors of the LEDGF/p75 binding site of integrase (LEDGINs) block HIV replication and modulate integrase multimerization. Antimicrob Agents Chemother. 2012. In Press: doi:10.1128/AAC.00717-00712.
  • [29]Demeulemeester J, Tintori C, Botta M, Debyser Z, Christ F: Development of an AlphaScreen-based HIV-1 integrase dimerization assay for discovery of novel allosteric inhibitors. J Biomol Screen 2012, 17:618-28.
  • [30]Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C, Thys W, et al.: LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 2013, 10:57. BioMed Central Full Text
  • [31]Feng L, Sharma A, Slaughter A, Jena N, Koh Y, Shkriabai N, et al.: The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 2013, 288:15813-20.
  • [32]Jurado KA, Wang H, Slaughter A, Feng L, Kessl JJ, Koh Y, et al.: Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci U S A 2013, 110:8690-5.
  • [33]Balakrishnan M, Yant SR, Tsai L, O'Sullivan C, Bam RA, Tsai A, et al.: Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One 2013, 8:e74163.
  • [34]Desimmie BA, Humbert M, Lescrinier E, Hendrix J, Vets S, Gijsbers R, et al.: Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Mol Ther 2012, 20:2064-75.
  • [35]Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C: Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 2008, 338:21-30.
  • [36]Ott DE: Cellular proteins detected in HIV-1. Rev Med Virol 2008, 18:159-75.
  • [37]Weber K, Osborn M: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 1969, 244:4406-12.
  • [38]HIVcleave. [http://www.csbio.sjtu.edu.cn/bioinf/HIV/#]
  • [39]Wu X, Daniels T, Molinaro C, Lilly MB, Casiano CA: Caspase cleavage of the nuclear autoantigen LEDGF/p75 abrogates its pro-survival function: implications for autoimmunity in atopic disorders. Cell Death Differ 2002, 9:915-25.
  • [40]Busschots K, Voet A, De Maeyer M, Rain JC, Emiliani S, Benarous R, et al.: Identification of the LEDGF/p75 binding site in HIV-1 integrase. J Mol Biol 2007, 365:1480-92.
  • [41]Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A: Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci U S A 2005, 102:17308-13.
  • [42]Fadel HJ, Morrison JH, Saenz DT, Fuchs JR, Kvaratskhelia M, Ekker SC, et al.: TALEN knockout of the PSIP1 gene in human cells: analyses of HIV-1 replication and allosteric integrase inhibitor mechanism. J Virol 2014, 88:9704-17.
  • [43]Yung E, Sorin M, Wang EJ, Perumal S, Ott D, Kalpana GV: Specificity of interaction of INI1/hSNF5 with retroviral integrases and its functional significance. J Virol 2004, 78:2222-31.
  • [44]Zheng Y, Ao Z, Wang B, Jayappa KD, Yao X: Host protein Ku70 binds and protects HIV-1 integrase from proteasomal degradation and is required for HIV replication. J Biol Chem 2011, 286:17722-35.
  • [45]Santos S, Obukhov Y, Nekhai S, Bukrinsky M, Iordanskiy S: Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology 2012, 9:65. BioMed Central Full Text
  • [46]Singh DP, Ohguro N, Kikuchi T, Sueno T, Reddy VN, Yuge K, et al.: Lens epithelium-derived growth factor: effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts. Biochem Biophys Res Commun 2000, 267:373-81.
  • [47]Thirant C, Galan-Moya EM, Dubois LG, Pinte S, Chafey P, Broussard C, et al.: Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells 2012, 30:845-53.
  • [48]AVP Protein Database. [http://ncifrederick.cancer.gov/research/avp/protein_db.asp]
  • [49]Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW Jr, et al.: Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 2006, 80:9039-52.
  • [50]Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM, et al.: The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 2004, 11:672-5.
  • [51]Mangeot PE, Duperrier K, Negre D, Boson B, Rigal D, Cosset FL, et al.: High levels of transduction of human dendritic cells with optimized SIV vectors. Mole Therapy J Am Soc Gene Therapy 2002, 5:283-90.
  • [52]Vets S, Kimpel J, Volk A, De Rijck J, Schrijvers R, Verbinnen B, et al.: Lens epithelium-derived growth factor/p75 qualifies as a target for HIV gene therapy in the NSG mouse model. Mole Therapy J Am Soc Gene Therapy 2012, 20:908-17.
  • [53]Geraerts M, Michiels M, Baekelandt V, Debyser Z, Gijsbers R: Upscaling of lentiviral vector production by tangential flow filtration. J Gene Med 2005, 7:1299-310.
  • [54]Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961, 7:88-95.
  • [55]Shen HB, Chou KC: HIVcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins. Anal Biochem 2008, 375:388-90.
  文献评价指标  
  下载次数:0次 浏览次数:4次