Retrovirology | |
HIV-1 IN/Pol recruits LEDGF/p75 into viral particles | |
Zeger Debyser2  Frauke Christ2  Rik Gijsbers2  Norbert Bannert1  Jan Mast4  Jan De Rijck2  Igor Paron5  Paul Proost6  Jonas Demeulemeester2  Sofie Vets2  Rik Schrijvers2  Caroline Weydert2  Belete Ayele Desimmie3  | |
[1] Robert Koch Institute, Centre for HIV and Retrovirology, Berlin, Germany;Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Leuven, Flanders, Belgium;Present address: Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA;Veterinary and Agrochemical Research Centre CODA-CERVA, Brussels, Belgium;Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, D-82152, Germany;KU Leuven, Laboratory of Molecular Immunology, Rega Institute, Leuven, Flanders, Belgium | |
关键词: Assembly; Protease cleavage sites; Protease; LEDGF/p75; Integrase; | |
Others : 1162857 DOI : 10.1186/s12977-014-0134-4 |
|
received in 2014-10-10, accepted in 2014-12-22, 发布年份 2015 | |
【 摘 要 】
Background
The dynamic interaction between HIV and its host governs the replication of the virus and the study of the virus-host interplay is key to understand the viral lifecycle. The host factor lens epithelium-derived growth factor (LEDGF/p75) tethers the HIV preintegration complex to the chromatin through a direct interaction with integrase (IN). Small molecules that bind the LEDGF/p75 binding pocket of the HIV IN dimer (LEDGINs) block HIV replication through a multimodal mechanism impacting early and late stage replication including HIV maturation. Furthermore, LEDGF/p75 has been identified as a Pol interaction partner. This raised the question whether LEDGF/p75 besides acting as a molecular tether in the target cell, also affects late steps of HIV replication.
Results
LEDGF/p75 is recruited into HIV-1 particles through direct interaction with the viral IN (or Pol polyprotein) and is a substrate for HIV-1 protease. Incubation in the presence of HIV-1 protease inhibitors resulted in detection of full-length LEDGF/p75 in purified viral particles. We also demonstrate that inhibition of LEDGF/p75-IN interaction by specific mutants or LEDGINs precludes incorporation of LEDGF/p75 in virions, underscoring the specificity of the uptake. LEDGF/p75 depletion did however not result in altered LEDGIN potency.
Conclusion
Together, these results provide evidence for an IN/Pol mediated uptake of LEDGF/p75 in viral particles and a specific cleavage by HIV protease. Understanding of the possible role of LEDGF/p75 or its cleavage fragments in the viral particle awaits further experimentation.
【 授权许可】
2015 Desimmie et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150413082155274.pdf | 3369KB | download | |
Figure 5. | 60KB | Image | download |
Figure 4. | 57KB | Image | download |
Figure 3. | 50KB | Image | download |
Figure 2. | 99KB | Image | download |
Figure 1. | 80KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, et al.: HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 2003, 278:372-81.
- [2]Llano M, Saenz DT, Meehan A, Wongthida P, Peretz M, Walker WH, et al.: An essential role for LEDGF/p75 in HIV integration. Science 2006, 314:461-4.
- [3]Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E, Debyser Z, et al.: LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 2003, 278:33528-39.
- [4]McNeely M, Hendrix J, Busschots K, Boons E, Deleersnijder A, Gerard M, et al.: In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol 2011, 410:811-30.
- [5]Vandekerckhove L, Christ F, Van Maele B, De Rijck J, Gijsbers R, Van den Haute C, et al.: Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J Virol 2006, 80:1886-96.
- [6]Ge H, Si Y, Roeder RG: Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 1998, 17:6723-9.
- [7]Yokoyama A, Cleary ML: Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 2008, 14:36-46.
- [8]Daugaard M, Baude A, Fugger K, Povlsen LK, Beck H, Sorensen CS, et al.: LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol 2012, 19:803-10.
- [9]Bartholomeeusen K, De Rijck J, Busschots K, Desender L, Gijsbers R, Emiliani S, et al.: Differential interaction of HIV-1 integrase and JPO2 with the C terminus of LEDGF/p75. J Mol Biol 2007, 372:407-21.
- [10]Maertens GN, Cherepanov P, Engelman A: Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin. J Cell Sci 2006, 119:2563-71.
- [11]Shun MC, Botbol Y, Li X, Di Nunzio F, Daigle JE, Yan N, et al.: Identification and characterization of PWWP domain residues critical for LEDGF/p75 chromatin binding and human immunodeficiency virus type 1 infectivity. J Virol 2008, 82:11555-67.
- [12]Gijsbers R, Vets S, De Rijck J, Ocwieja KE, Ronen K, Malani N, et al.: Role of the PWWP domain of lens epithelium-derived growth factor (LEDGF)/p75 cofactor in lentiviral integration targeting. J Biol Chem 2011, 286:41812-25.
- [13]Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA: Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 2012, 8:e1002717.
- [14]Cherepanov P, Devroe E, Silver PA, Engelman A: Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J Biol Chem 2004, 279:48883-92.
- [15]Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P, et al.: LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev 2007, 21:1767-78.
- [16]Hendrix J, Gijsbers R, De Rijck J, Voet A, Hotta J, McNeely M, et al.: The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering. Nucleic Acids Res 2011, 39:1310-25.
- [17]Schrijvers R, De Rijck J, Demeulemeester J, Adachi N, Vets S, Ronen K, et al.: LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog 2012, 8:e1002558.
- [18]Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, et al.: A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 2005, 11:1287-9.
- [19]Schrijvers R, Vets S, De Rijck J, Malani N, Bushman FD, Debyser Z, et al.: HRP-2 determines HIV-1 integration site selection in LEDGF/p75 depleted cells. Retrovirology 2012, 9:84. BioMed Central Full Text
- [20]Wang H, Jurado KA, Wu XL, Shun MC, Li X, Ferris AL, et al.: HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor. Nucleic Acids Res 2012, 40:11518-30.
- [21]Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, et al.: Global landscape of HIV-human protein complexes. Nature 2012, 481:365-70.
- [22]Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, et al.: Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 2010, 6:442-8.
- [23]Kessl JJ, Jena N, Koh Y, Taskent-Sezgin H, Slaughter A, Feng L, et al.: Multimode, Cooperative Mechanism of Action of Allosteric HIV-1 Integrase Inhibitors. J Biol Chem 2012, 287:16801-11.
- [24]Le Rouzic E, Bonnard D, Chasset S, Bruneau JM, Chevreuil F, Le Strat F, et al.: Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage. Retrovirology 2013, 10:144. BioMed Central Full Text
- [25]Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, et al.: New Class of HIV-1 Integrase (IN) Inhibitors with a Dual Mode of Action. J Biol Chem 2012, 287:21189-203.
- [26]Sharma A, Slaughter A, Jena N, Feng L, Kessl JJ, Fadel HJ, et al.: A new class of multimerization selective inhibitors of HIV-1 integrase. PLoS Pathog 2014, 10:e1004171.
- [27]Gupta K, Brady T, Dyer BM, Malani N, Hwang Y, Male F, et al.: Allosteric inhibition of human immunodeficiency virus integrase: Late block during viral replication and abnormal multimerization involving specific protein domains. J Biol Chem 2014, 289:20477-88.
- [28]Christ F, Shaw S, Demeulemeester J, Desimmie BA, Marchand A, Butler S, et al. Small molecule inhibitors of the LEDGF/p75 binding site of integrase (LEDGINs) block HIV replication and modulate integrase multimerization. Antimicrob Agents Chemother. 2012. In Press: doi:10.1128/AAC.00717-00712.
- [29]Demeulemeester J, Tintori C, Botta M, Debyser Z, Christ F: Development of an AlphaScreen-based HIV-1 integrase dimerization assay for discovery of novel allosteric inhibitors. J Biomol Screen 2012, 17:618-28.
- [30]Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C, Thys W, et al.: LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions. Retrovirology 2013, 10:57. BioMed Central Full Text
- [31]Feng L, Sharma A, Slaughter A, Jena N, Koh Y, Shkriabai N, et al.: The A128T resistance mutation reveals aberrant protein multimerization as the primary mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 2013, 288:15813-20.
- [32]Jurado KA, Wang H, Slaughter A, Feng L, Kessl JJ, Koh Y, et al.: Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation. Proc Natl Acad Sci U S A 2013, 110:8690-5.
- [33]Balakrishnan M, Yant SR, Tsai L, O'Sullivan C, Bam RA, Tsai A, et al.: Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells. PLoS One 2013, 8:e74163.
- [34]Desimmie BA, Humbert M, Lescrinier E, Hendrix J, Vets S, Gijsbers R, et al.: Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Mol Ther 2012, 20:2064-75.
- [35]Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C: Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 2008, 338:21-30.
- [36]Ott DE: Cellular proteins detected in HIV-1. Rev Med Virol 2008, 18:159-75.
- [37]Weber K, Osborn M: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 1969, 244:4406-12.
- [38]HIVcleave. [http://www.csbio.sjtu.edu.cn/bioinf/HIV/#]
- [39]Wu X, Daniels T, Molinaro C, Lilly MB, Casiano CA: Caspase cleavage of the nuclear autoantigen LEDGF/p75 abrogates its pro-survival function: implications for autoimmunity in atopic disorders. Cell Death Differ 2002, 9:915-25.
- [40]Busschots K, Voet A, De Maeyer M, Rain JC, Emiliani S, Benarous R, et al.: Identification of the LEDGF/p75 binding site in HIV-1 integrase. J Mol Biol 2007, 365:1480-92.
- [41]Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A: Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci U S A 2005, 102:17308-13.
- [42]Fadel HJ, Morrison JH, Saenz DT, Fuchs JR, Kvaratskhelia M, Ekker SC, et al.: TALEN knockout of the PSIP1 gene in human cells: analyses of HIV-1 replication and allosteric integrase inhibitor mechanism. J Virol 2014, 88:9704-17.
- [43]Yung E, Sorin M, Wang EJ, Perumal S, Ott D, Kalpana GV: Specificity of interaction of INI1/hSNF5 with retroviral integrases and its functional significance. J Virol 2004, 78:2222-31.
- [44]Zheng Y, Ao Z, Wang B, Jayappa KD, Yao X: Host protein Ku70 binds and protects HIV-1 integrase from proteasomal degradation and is required for HIV replication. J Biol Chem 2011, 286:17722-35.
- [45]Santos S, Obukhov Y, Nekhai S, Bukrinsky M, Iordanskiy S: Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology 2012, 9:65. BioMed Central Full Text
- [46]Singh DP, Ohguro N, Kikuchi T, Sueno T, Reddy VN, Yuge K, et al.: Lens epithelium-derived growth factor: effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts. Biochem Biophys Res Commun 2000, 267:373-81.
- [47]Thirant C, Galan-Moya EM, Dubois LG, Pinte S, Chafey P, Broussard C, et al.: Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells 2012, 30:845-53.
- [48]AVP Protein Database. [http://ncifrederick.cancer.gov/research/avp/protein_db.asp]
- [49]Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW Jr, et al.: Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 2006, 80:9039-52.
- [50]Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM, et al.: The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 2004, 11:672-5.
- [51]Mangeot PE, Duperrier K, Negre D, Boson B, Rigal D, Cosset FL, et al.: High levels of transduction of human dendritic cells with optimized SIV vectors. Mole Therapy J Am Soc Gene Therapy 2002, 5:283-90.
- [52]Vets S, Kimpel J, Volk A, De Rijck J, Schrijvers R, Verbinnen B, et al.: Lens epithelium-derived growth factor/p75 qualifies as a target for HIV gene therapy in the NSG mouse model. Mole Therapy J Am Soc Gene Therapy 2012, 20:908-17.
- [53]Geraerts M, Michiels M, Baekelandt V, Debyser Z, Gijsbers R: Upscaling of lentiviral vector production by tangential flow filtration. J Gene Med 2005, 7:1299-310.
- [54]Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961, 7:88-95.
- [55]Shen HB, Chou KC: HIVcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins. Anal Biochem 2008, 375:388-90.