Patient Safety in Surgery | |
The 'Ziran' wrap: reconstruction of critical-sized long bone defects using a fascial autograft and reamer-irrigator-aspirator autograft | |
Wade R Smith2  Navid M Ziran1  | |
[1] Hip & Pelvis Institute, 2001 Santa Monica Blvd, Suite 760, Santa Monica, 90404, California, USA;Mountain Orthopaedic Trauma Surgeons at Swedish, 701 E. Hampden Ave, CO 80113 Englewood, USA | |
关键词: Reamer-irrigator-aspirator; Periosteum; Guided bone regeneration; Stem/progenitor cells; Critical-sized defect; | |
Others : 1210310 DOI : 10.1186/s13037-014-0040-7 |
|
received in 2014-05-10, accepted in 2014-09-10, 发布年份 2014 | |
【 摘 要 】
Reconstruction of critical-size bony defects remains a challenge to surgeons despite recent technological advances. Current treatments include distraction osteogenesis, cancellous autograft, induced membranes (Masquelet procedure), polymeric membranes, and titanium-mesh cages filled with bone graft. In this article, the authors presents two cases in which critical-sized defects were reconstructed using a meshed fascial autograft encasing reamer-irrigator-aspirator (RIA) autograft and cancellous allograft. This article will discuss the clinical outcomes of the technique, comparison to other current techniques, and technical insight into the potential biological mechanism.
【 授权许可】
2014 Ziran and Smith; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150605081946899.pdf | 3654KB | download | |
Figure 14. | 64KB | Image | download |
Figure 13. | 31KB | Image | download |
Figure 12. | 27KB | Image | download |
Figure 11. | 34KB | Image | download |
Figure 10. | 100KB | Image | download |
Figure 9. | 22KB | Image | download |
Figure 8. | 68KB | Image | download |
Figure 7. | 25KB | Image | download |
Figure 6. | 25KB | Image | download |
Figure 5. | 33KB | Image | download |
Figure 4. | 131KB | Image | download |
Figure 3. | 128KB | Image | download |
Figure 2. | 66KB | Image | download |
Figure 1. | 65KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
【 参考文献 】
- [1]Gugala Z, Lindsey RW, Gogolewski S: New approaches in the treatment of critical-size segmental defects in long bones. Macromolecular Symposia 2007, 253:147-161.
- [2]Masquelet AC, Fitoussi F, Begue T, Muller GP: Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 2000, 45(3):346-53.
- [3]Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J: Induced membranes secrete growth factors including vascular and osteoconductive factors and could stimulate bone regeneration. J Orthop Res 2004, 22(1):73-9.
- [4]Klaue K, Knothe U, Anton C, Pfluger DH, Stoddart M, Masquelet AC, Perren SM: Bone regeneration in long-bone defects: tissue compartmentalization? In vivo study on bone defects in sheep. Injury, Int J Care Injured 2009, 40(S4):S95-S102.
- [5]Pelissier P, Bollecker V, Martin D, Baudet J: Foot reconstruction with the ¿bi-Masquelet¿ procedure. Ann Chir Plast Esthet 2002, 47(4):304-7.
- [6]Huffman LK, Harris JG, Suk M: Using the bi-masquelet technique and reamer-irrigator-aspirator for post-traumatic foot reconstruction. Foot Ankle Int 2009, 30(9):895-9.
- [7]Stafford PR, Norris BL: Reamer-irrigator-aspirator bone graft and bi-Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury 2010, 41(Suppl 2):S72-7.
- [8]Bergsma JE, de Bruijn WC, Rozema FR, Bos RRM, Boering G: Late degradation tissue response to poly (L-lactide) bone plates and screws. Biomaterials 1995, 16(1):25-31.
- [9]Gugala Z, Gogolewski S: Regeneration of segmental diaphyseal defects in sheep tibiae using resorbably polymeric membranes: a preliminary study. J Orthop Trauma 1999, 13(3):187-95.
- [10]Meinig RP, Rahn B, Perren SM: Regeneration of diaphyseal bone defects using a resorbable poly(L-lactide) tissue separation membrane. Int J Artif Organs 1990, 13:577.
- [11]Meinig RP, Rahn B, Perren SM, Gogolewski S: Bone regeneration with resorbable polymeric membranes: treatment of diaphyseal bone defects in the rabbit radius with poly(L-lactide) membrane. J Orthop Trauma 1996, 10:178-90.
- [12]Amini AR, Wallace JS, Nukavarapu SP: Short-Term and Long-Term Effects of Orthopaedic Biodegradable Implants. J Long Term Eff Med Implants 2011, 21(2):93-122.
- [13]Cho TJ, Gerstenfeld LC, Einhorn TA, Meinig RP, Buesing CM, Helm J, Gogolewski S: Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 2002, 17:513-520.
- [14]Kon T, Pineda LM, Buesing CM, Meinig RP, Gogolewski S: Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 2001, 16:1004-1014.
- [15]Perren SM: Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Rel Res 1975, 138:175-194.
- [16]Preininger B, Checa S, Molnar FL, Fratzl P, Duda GN, Raum K: Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy. Ultrasound Med Biol 2011, 37(3):474-483.
- [17]De Bari C, Dell¿Accocio F, Vanlauwe J, Eyckmans J, Khan IM, Archer CW, Jones EA, McGonagle D, Mitsiadis TA, Pitazlis C, Luyten FP: Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell analysis. Arthritis Rheum 2006, 54(4):1209-21.
- [18]Ozaki A, Tsunoda M, Kinoshita S, Saura R: Role of the fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci 2000, 5(1):64-70.
- [19]Liu R, Birke O, Morse A, Peacock L, Mikulec K, Little DG, Schindeler A: Myogenic progenitors contribute to open but not closed fracture repair. BMC Musculoskelet Disord 2011, 12:288. BioMed Central Full Text
- [20]Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchalal J: TNF-? promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A 2011, 108(4):1585-90.
- [21]Kuznetsov SA, Mankani MH, Leet AI, Ziran NM, Gronthos S, Robey PG: Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells 2007, 25(7):1830-9.
- [22]Khosla S, Eghbali-Fatourechi GZ: Circulating cells with osteogenic potential. Ann N Y Acad Sci 2006, 1068:489-97.
- [23]Reynders P, Becker JH, Broos P: Osteogenic ability of free periosteal autografts in tibial fractures with severe soft tissue damage: an experimental study. J Orthop Trauma 1999, 13(2):121-8.
- [24]Qvick LM, Ritter CA, Mutty CE, Rohrbacher BJ, Buyea CM, Anders MJ: Donor site morbidity with reamer-irrigator-aspirator (RIA) use for autologous bone graft harvesting in a single centre of 204 case series. Injury 2013, 44(10):1263-9.
- [25]Quintero AJ, Tarkin IS, Pape HC: Technical tricks when using the reamer irrigator aspirator technique for autologous bone graft harvesting. J Orthop Trauma Jan 2010, 24(1):42-5.
- [26]Wong DA, Kumar A, Jatana S, Ghiselli G, Wong K: Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). Spine J 2008, 8(6):1011-8.
- [27]Shields LBE, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB: Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 2006, 31(5):542-547.
- [28]Carragee EJ, Chu G, Rohatgi R, Hurwitz EL, Weiner BK, Yoon ST, Kopjar B: Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J Bone Joint Surgy Am 2013, 95(17):1537-45.
- [29]Chan DS, Garlan J, Infante A, Sanders RW, Sagi HC: Wound complications associated with BMP-2 in orthopaedic trauma surgery. J Orthop Trauma 2014, ?:?. ePub ahead of print
- [30]Stampfl J, Schuster M, Baudis S, Lichtenegger H, Liska R: Biodegradable stereolithography resins with defined mechanical properties. Virtual and Rapid Manufacturing, Proceedings VRAP. 2007, 283¿288.
- [31]Yang XB, Bhatnagar RS, Li S, Oreffo RO: Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 2004, 10(7¿8):1148-59.
- [32]Qu Z, Yan J, Li B, Zhuang J, Huang Y: Improving bone marrow stromal cell attachment on chitosan/hydroxyapatite scaffolds by an immobilized RGD peptide. Biomed Mater 2010, 5(6):065001.
- [33]Kruger TE, Miller AH, Wang J: Collagen scaffolds in bone sialoprotein-mediated bone regeneration. Scientific World Journal 2013, 2013:812718.