期刊论文详细信息
Patient Safety in Surgery
The 'Ziran' wrap: reconstruction of critical-sized long bone defects using a fascial autograft and reamer-irrigator-aspirator autograft
Wade R Smith2  Navid M Ziran1 
[1] Hip & Pelvis Institute, 2001 Santa Monica Blvd, Suite 760, Santa Monica, 90404, California, USA;Mountain Orthopaedic Trauma Surgeons at Swedish, 701 E. Hampden Ave, CO 80113 Englewood, USA
关键词: Reamer-irrigator-aspirator;    Periosteum;    Guided bone regeneration;    Stem/progenitor cells;    Critical-sized defect;   
Others  :  1210310
DOI  :  10.1186/s13037-014-0040-7
 received in 2014-05-10, accepted in 2014-09-10,  发布年份 2014
PDF
【 摘 要 】

Reconstruction of critical-size bony defects remains a challenge to surgeons despite recent technological advances. Current treatments include distraction osteogenesis, cancellous autograft, induced membranes (Masquelet procedure), polymeric membranes, and titanium-mesh cages filled with bone graft. In this article, the authors presents two cases in which critical-sized defects were reconstructed using a meshed fascial autograft encasing reamer-irrigator-aspirator (RIA) autograft and cancellous allograft. This article will discuss the clinical outcomes of the technique, comparison to other current techniques, and technical insight into the potential biological mechanism.

【 授权许可】

   
2014 Ziran and Smith; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150605081946899.pdf 3654KB PDF download
Figure 14. 64KB Image download
Figure 13. 31KB Image download
Figure 12. 27KB Image download
Figure 11. 34KB Image download
Figure 10. 100KB Image download
Figure 9. 22KB Image download
Figure 8. 68KB Image download
Figure 7. 25KB Image download
Figure 6. 25KB Image download
Figure 5. 33KB Image download
Figure 4. 131KB Image download
Figure 3. 128KB Image download
Figure 2. 66KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

【 参考文献 】
  • [1]Gugala Z, Lindsey RW, Gogolewski S: New approaches in the treatment of critical-size segmental defects in long bones. Macromolecular Symposia 2007, 253:147-161.
  • [2]Masquelet AC, Fitoussi F, Begue T, Muller GP: Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 2000, 45(3):346-53.
  • [3]Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J: Induced membranes secrete growth factors including vascular and osteoconductive factors and could stimulate bone regeneration. J Orthop Res 2004, 22(1):73-9.
  • [4]Klaue K, Knothe U, Anton C, Pfluger DH, Stoddart M, Masquelet AC, Perren SM: Bone regeneration in long-bone defects: tissue compartmentalization? In vivo study on bone defects in sheep. Injury, Int J Care Injured 2009, 40(S4):S95-S102.
  • [5]Pelissier P, Bollecker V, Martin D, Baudet J: Foot reconstruction with the ¿bi-Masquelet¿ procedure. Ann Chir Plast Esthet 2002, 47(4):304-7.
  • [6]Huffman LK, Harris JG, Suk M: Using the bi-masquelet technique and reamer-irrigator-aspirator for post-traumatic foot reconstruction. Foot Ankle Int 2009, 30(9):895-9.
  • [7]Stafford PR, Norris BL: Reamer-irrigator-aspirator bone graft and bi-Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury 2010, 41(Suppl 2):S72-7.
  • [8]Bergsma JE, de Bruijn WC, Rozema FR, Bos RRM, Boering G: Late degradation tissue response to poly (L-lactide) bone plates and screws. Biomaterials 1995, 16(1):25-31.
  • [9]Gugala Z, Gogolewski S: Regeneration of segmental diaphyseal defects in sheep tibiae using resorbably polymeric membranes: a preliminary study. J Orthop Trauma 1999, 13(3):187-95.
  • [10]Meinig RP, Rahn B, Perren SM: Regeneration of diaphyseal bone defects using a resorbable poly(L-lactide) tissue separation membrane. Int J Artif Organs 1990, 13:577.
  • [11]Meinig RP, Rahn B, Perren SM, Gogolewski S: Bone regeneration with resorbable polymeric membranes: treatment of diaphyseal bone defects in the rabbit radius with poly(L-lactide) membrane. J Orthop Trauma 1996, 10:178-90.
  • [12]Amini AR, Wallace JS, Nukavarapu SP: Short-Term and Long-Term Effects of Orthopaedic Biodegradable Implants. J Long Term Eff Med Implants 2011, 21(2):93-122.
  • [13]Cho TJ, Gerstenfeld LC, Einhorn TA, Meinig RP, Buesing CM, Helm J, Gogolewski S: Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 2002, 17:513-520.
  • [14]Kon T, Pineda LM, Buesing CM, Meinig RP, Gogolewski S: Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 2001, 16:1004-1014.
  • [15]Perren SM: Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Rel Res 1975, 138:175-194.
  • [16]Preininger B, Checa S, Molnar FL, Fratzl P, Duda GN, Raum K: Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy. Ultrasound Med Biol 2011, 37(3):474-483.
  • [17]De Bari C, Dell¿Accocio F, Vanlauwe J, Eyckmans J, Khan IM, Archer CW, Jones EA, McGonagle D, Mitsiadis TA, Pitazlis C, Luyten FP: Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell analysis. Arthritis Rheum 2006, 54(4):1209-21.
  • [18]Ozaki A, Tsunoda M, Kinoshita S, Saura R: Role of the fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci 2000, 5(1):64-70.
  • [19]Liu R, Birke O, Morse A, Peacock L, Mikulec K, Little DG, Schindeler A: Myogenic progenitors contribute to open but not closed fracture repair. BMC Musculoskelet Disord 2011, 12:288. BioMed Central Full Text
  • [20]Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchalal J: TNF-? promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A 2011, 108(4):1585-90.
  • [21]Kuznetsov SA, Mankani MH, Leet AI, Ziran NM, Gronthos S, Robey PG: Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells 2007, 25(7):1830-9.
  • [22]Khosla S, Eghbali-Fatourechi GZ: Circulating cells with osteogenic potential. Ann N Y Acad Sci 2006, 1068:489-97.
  • [23]Reynders P, Becker JH, Broos P: Osteogenic ability of free periosteal autografts in tibial fractures with severe soft tissue damage: an experimental study. J Orthop Trauma 1999, 13(2):121-8.
  • [24]Qvick LM, Ritter CA, Mutty CE, Rohrbacher BJ, Buyea CM, Anders MJ: Donor site morbidity with reamer-irrigator-aspirator (RIA) use for autologous bone graft harvesting in a single centre of 204 case series. Injury 2013, 44(10):1263-9.
  • [25]Quintero AJ, Tarkin IS, Pape HC: Technical tricks when using the reamer irrigator aspirator technique for autologous bone graft harvesting. J Orthop Trauma Jan 2010, 24(1):42-5.
  • [26]Wong DA, Kumar A, Jatana S, Ghiselli G, Wong K: Neurologic impairment from ectopic bone in the lumbar canal: a potential complication of off-label PLIF/TLIF use of bone morphogenetic protein-2 (BMP-2). Spine J 2008, 8(6):1011-8.
  • [27]Shields LBE, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB: Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 2006, 31(5):542-547.
  • [28]Carragee EJ, Chu G, Rohatgi R, Hurwitz EL, Weiner BK, Yoon ST, Kopjar B: Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J Bone Joint Surgy Am 2013, 95(17):1537-45.
  • [29]Chan DS, Garlan J, Infante A, Sanders RW, Sagi HC: Wound complications associated with BMP-2 in orthopaedic trauma surgery. J Orthop Trauma 2014, ?:?. ePub ahead of print
  • [30]Stampfl J, Schuster M, Baudis S, Lichtenegger H, Liska R: Biodegradable stereolithography resins with defined mechanical properties. Virtual and Rapid Manufacturing, Proceedings VRAP. 2007, 283¿288.
  • [31]Yang XB, Bhatnagar RS, Li S, Oreffo RO: Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 2004, 10(7¿8):1148-59.
  • [32]Qu Z, Yan J, Li B, Zhuang J, Huang Y: Improving bone marrow stromal cell attachment on chitosan/hydroxyapatite scaffolds by an immobilized RGD peptide. Biomed Mater 2010, 5(6):065001.
  • [33]Kruger TE, Miller AH, Wang J: Collagen scaffolds in bone sialoprotein-mediated bone regeneration. Scientific World Journal 2013, 2013:812718.
  文献评价指标  
  下载次数:84次 浏览次数:21次