期刊论文详细信息
Respiratory Research
Models of chronic obstructive pulmonary disease
K Fan Chung1  David A Groneberg2 
[1] Thoracic Medicine, National Heart & Lung Institute, Imperial College, London, UK;Pneumology and Immunology, Otto-Heubner-Centre, Charité School of Medicine, Free University and Humboldt-University, Berlin, Germany
关键词: sulfur dioxide;    nitrogen dioxide;    tobacco smoke;    guinea pig;    rat;    mice;    animal;    asthma;    COPD;    Chronic obstructive pulmonary disease;   
Others  :  1227358
DOI  :  10.1186/1465-9921-5-18
 received in 2004-07-28, accepted in 2004-11-02,  发布年份 2004
PDF
【 摘 要 】

Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations.

【 授权许可】

   
2004 Groneberg and Chung; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150928094701612.pdf 605KB PDF download
Figure 2. 29KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Murray CJL, Lopez AD: Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997, 349:1436-1442.
  • [2]Chung F, Barnes N, Allen M, Angus R, Corris P, Knox A, Miles J, Morice A, O'Reilly J, Richardson M: Assessing the burden of respiratory disease in the UK. Respir Med 2002, 96:963-975.
  • [3]Fletcher C, Peto R: The natural history of chronic airflow obstruction. BMJ 1977, 1:1645-1648.
  • [4]Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001, 163:1256-1276.
  • [5]Chung KF, Barnes PJ: Cytokines in asthma. Thorax 1999, 54:825-857.
  • [6]Springer J, Geppetti P, Fischer A, Groneberg DA: Calcitonin gene-related peptide as inflammatory mediator. Pulm Pharmacol Ther 2003, 16:121-130.
  • [7]Sutherland ER, Martin RJ: Airway inflammation in chronic obstructive pulmonary disease*1: Comparisons with asthma. J Allergy Clin Immunol 2003, 112:819-827.
  • [8]Chung KF: Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl 2001, 34:50s-59s.
  • [9]Groneberg DA, Witt C, Wagner U, Chung KF, Fischer A: Fundamentals of pulmonary drug delivery. Respir Med 2003, 97:382-387.
  • [10]Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD: The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004, 350:2645-2653.
  • [11]Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ: The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004, 350:1005-1012.
  • [12]Cosio M, Ghezzo H, Hogg JC, Corbin R, Loveland M, Dosman J, Macklem PT: The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med 1978, 298:1277-1281.
  • [13]Penman RW, O'Neill RP, Begley L: The progress of chronic airway obstruction in relation to measurements of airway resistance and lung elastic recoil. Am Rev Respir Dis 1970, 101:536-544.
  • [14]Colebatch HJ, Finucane KE, Smith MM: Pulmonary conductance and elastic recoil relationships in asthma and emphysema. J Appl Physiol 1973, 34:143-153.
  • [15]Kips JC, Anderson GP, Fredberg JJ, Herz U, Inman MD, Jordana M, Kemeny DM, Lotvall J, Pauwels RA, Plopper CG, Schmidt D, Sterk PJ, Van Oosterhout AJ, Vargaftig BB, Chung KF: Murine models of asthma. Eur Respir J 2003, 22:374-382.
  • [16]Martin C, Uhlig S, Ullrich V: Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur Respir J 1996, 9:2479-2487.
  • [17]Springer J, Wagner S, Subramamiam A, McGregor GP, Groneberg DA, Fischer A: BDNF-overexpression regulates the reactivity of small pulmonary arteries to neurokinin A. Regul Pept 2004, 118:19-23.
  • [18]Agusti AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X: Systemic effects of chronic obstructive pulmonary disease. Eur Respir J 2003, 21:347-360.
  • [19]Schols AM, Slangen J, Volovics L, Wouters EF: Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998, 157:1791-1797.
  • [20]Saetta M, Di Stefano A, Turato G, Facchini FM, Corbino L, Mapp CE, Maestrelli P, Ciaccia A, Fabbri LM: CD T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998, 157:822-826.
  • [21]Saetta M, Di Stefano A, Maestrelli P, Ferraresso A, Drigo R, Potena A, Ciaccia A, Fabbri LM: Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis 1993, 147:301-306.
  • [22]Saetta M, Baraldo S, Corbino L, Turato G, Braccioni F, Rea F, Cavallesco G, Tropeano G, Mapp CE, Maestrelli P, Ciaccia A, Fabbri LM: CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999, 160:711-717.
  • [23]Stockley RA: Neutrophils and the pathogenesis of COPD. Chest 2002, 121:151S-155S.
  • [24]Hunninghake GW, Crystal RG: Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis 1983, 128:833-838.
  • [25]Stanescu D, Sanna A, Veriter C, Kostianev S, Calcagni PG, Fabbri LM, Maestrelli P: Airways obstruction, chronic expectoration, and rapid decline of FEV1 in smokers are associated with increased levels of sputum neutrophils. Thorax 1996, 51:267-271.
  • [26]Shapiro STEVEND: The Macrophage in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 1999, 160:29S-32.
  • [27]Churg A, Zay K, Shay S, Xie C, Shapiro SD, Hendricks R, Wright JL: Acute cigarette smoke-induced connective tissue breakdown requires both neutrophils and macrophage metalloelastase in mice. Am J Respir Cell Mol Biol 2002, 27:368-374.
  • [28]Churg A, Wang RD, Tai H, Wang X, Xie C, Dai J, Shapiro SD, Wright JL: Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-[Alpha;] release. Am J Respir Crit Care Med 2003, 167:1083-1089.
  • [29]O'Byrne PM, Inman MD: Airway hyperresponsiveness. Chest 2003, 123:411S-6S.
  • [30]Vignola AM, La Grutta S, Chiappara G, Benkeder A, Bellia V, Bonsignore G: Cellular network in airways inflammation and remodelling. Paediatr Respir Rev 2002, 3:41-46.
  • [31]Groneberg DA, Eynott PR, Lim S, Oates T, Wu R, Carlstedt I, Roberts P, McCann B, Nicholson AG, Harrison BD, Chung KF: Expression of respiratory mucins in fatal status asthmaticus and mild asthma. Histopathology 2002, 40:367-373.
  • [32]Groneberg DA, Eynott PR, Oates T, Lim S, Wu R, Carlstedt I, Nicholson AG, Chung KF: Expression of MUC5AC and MUC5B mucins in normal and cystic fibrosis lung. Respir Med 2002, 96:81-86.
  • [33]Groneberg DA, Wagner U, Chung KF: Mucus and fatal asthma. Am J Med 2004, 116:66-67.
  • [34]Majo J, Ghezzo H, Cosio MG: Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J 2001, 17:946-953.
  • [35]Retamales I, Elliott WM, Meshi B, Coxson HO, Pare PD, Sciurba FC, Rogers RM, Hayashi S, Hogg JC: Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med 2001, 164:469-473.
  • [36]O'Shaughnessy TC, Ansari TW, Barnes NC, Jeffery PK: Inflammation in bronchial biopsies of subjects with chronic bronchitis: Inverse relationship of CD8 T lymphocytes with FEV1. Am J Respir Crit Care Med 1997, 155:852-857.
  • [37]Fabbri LM, Romagnoli M, Corbetta L, Casoni G, Busljetic K, Turato G, Ligabue G, Ciaccia A, Saetta M, Papi A: Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003, 167:418-424.
  • [38]Saetta M, Di Stefano A, Maestrelli P, Turato G, Ruggieri MP, Roggeri A, Calcagni P, Mapp CE, Ciaccia A, Fabbri et : Airway eosinophilia in chronic bronchitis during exacerbations. Am J Respir Crit Care Med 1994, 150:1646-1652.
  • [39]Fujimoto K, Kubo K, Yamamoto H, Yamaguchi S, Matsuzawa Y: Eosinophilic inflammation in the airway is related to glucocorticoid reversibility in patients with pulmonary emphysema. Chest 1999, 115:697-702.
  • [40]Pizzichini E, Pizzichini MMM, Gibson P, Parameswaran K, Gleich GJ, Berman L, Dolovich J, Hargreave FE: Sputum eosinophilia predicts benefit from prednisone in smokers with chronic obstructive bronchitis. Am J Respir Crit Care Med 1998, 158:1511-1517.
  • [41]Chanez P, Vignola AM, O'Shaugnessy T, Enander I, Li D, Jeffery PK, Bousquet J: Corticosteroid reversibility in COPD is related to features of asthma. Am J Respir Crit Care Med 1997, 155:1529-1534.
  • [42]Saetta M, Turato G, Corbino L, Ruggieri MP, Pieno M, Mapp CE, Maestrelli P, Ciaccia A, Fabbri LM: Mechanisms of damage in COPD. Monaldi Arch Chest Dis 1997, 52:586-588.
  • [43]Saetta M: Airway inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999, 160:S17-20.
  • [44]Chung KF, Caramori G, Groneberg DA: Small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004., In Press
  • [45]Baraldo S, Turato G, Badin C, Bazzan E, Beghe B, Zuin R, Calabrese F, Casoni G, Maestrelli P, Papi A, Fabbri LM, Saetta M: Neutrophilic infiltration within the airway smooth muscle in patients with COPD. Thorax 2004, 59:308-312.
  • [46]Shapiro SD: Proteolysis in the lung. Eur Respir J Suppl 2003, 44:30s-32s.
  • [47]Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD: Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 1997, 277:2002-2004.
  • [48]Shapiro SD, Goldstein NM, Houghton AMG, Kobayashi DK, Kelley D, Belaaouaj A: Neutrophil Elastase Contributes to Cigarette Smoke-Induced Emphysema in Mice. Am J Pathol 2003, 163:2329-2335.
  • [49]Parfrey H, Mahadeva R, Lomas DA: Alpha(1)-antitrypsin deficiency, liver disease and emphysema. Int J Biochem Cell Biol 2003, 35:1009-1014.
  • [50]Lomas DA, Mahadeva R: [Alpha;]1-antitrypsin polymerization and the serpinopathies: Pathobiology and prospects for therapy. J Clin Invest 2002, 110:1585-1590.
  • [51]Barnes PJ, Shapiro SD, Pauwels RA: Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 2003, 22:672-688.
  • [52]Shapiro SD: Proteinases in chronic obstructive pulmonary disease. Biochem Soc Trans 2002, 30:98-102.
  • [53]Paredi P, Kharitonov SA, Barnes PJ: Analysis of expired air for oxidation products. Am J Respir Crit Care Med 2002, 166:S31-7.
  • [54]Kharitonov SA, Barnes PJ: Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers 2002, 7:1-32.
  • [55]Kostikas K, Papatheodorou G, Psathakis K, Panagou P, Loukides S: Oxidative Stress in Expired Breath Condensate of Patients With COPD. Chest 2003, 124:1373-1380.
  • [56]Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA, Barnes PJ: Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med 2000, 162:1175-1177.
  • [57]Corradi M, Montuschi P, Donnelly LE, Pesci A, Kharitonov SA, Barnes PJ: Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. Am J Respir Crit Care Med 2001, 163:854-858.
  • [58]Biernacki WA, Kharitonov SA, Barnes PJ: Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax 2003, 58:294-298.
  • [59]D'Armiento J, Dalal SS, Okada Y, Berg RA, Chada K: Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell 1992, 71:955-961.
  • [60]Nishikawa M, Kakemizu N, Ito T, Kudo M, Kaneko T, Suzuki M, Udaka N, Ikeda H, Okubo T: Superoxide mediates cigarette smoke-induced infiltration of neutrophils into the airways through nuclear factor-kappaB activation and IL-8 mRNA expression in guinea pigs in vivo. Am J Respir Cell Mol Biol 1999, 20:189-198.
  • [61]Lagente V, Advenier C: Tachykinins and airway function. Pulm Pharmacol Ther 1998, 11:331-340.
  • [62]Groneberg DA, Springer J, Fischer A: Vasoactive intestinal polypeptide as mediator of asthma. Pulm Pharmacol Ther 2001, 14:391-401.
  • [63]Barnes PJ: Histamine and serotonin. Pulm Pharmacol Ther 2001, 14:329-339.
  • [64]Eynott PR, Groneberg DA, Caramori G, Adcock IM, Donnelly LE, Kharitonov S, Barnes PJ, Chung KF: Role of nitric oxide in allergic inflammation and bronchial hyperresponsiveness. Eur J Pharmacol 2002, 452:123-133.
  • [65]Eynott PR, Paavolainen N, Groneberg DA, Noble A, Salmon M, Nath P, Leung SY, Chung KF: Role of nitric oxide in chronic allergen-induced airway cell proliferation and inflammation. J Pharmacol Exp Ther 2003, 304:22-29.
  • [66]Nicosia S, Capra V, Rovati GE: Leukotrienes as mediators of asthma. Pulm Pharmacol Ther 2001, 14:3-19.
  • [67]Groneberg DA, Fischer A: Endogenous opioids as mediators of asthma. Pulm Pharmacol Ther 2001, 14:383-389.
  • [68]Springer J, Scholz FR, Peiser C, Groneberg DA, Fischer A: SMAD-signaling in chronic obstructive pulmonary disease: transcriptional down-regulation of inhibitory SMAD 6 and 7 by cigarette smoke. Biol Chem 2004, 385:649-653.
  • [69]Groneberg DA, Witt H, Adcock IM, Hansen G, Springer J: Smads as intracellular mediators of airway inflammation. Exp Lung Res 2004, 30:223-250.
  • [70]Marwick JA, Kirkham PA, Stevenson CS, Danahay H, Giddings J, Butler K, Donaldson K, MacNee W, Rahman I: Cigarette smoke alters chromatin remodelling and induces pro-inflammatory genes in rat lungs. Am J Respir Cell Mol Biol 2004.
  • [71]Moodie FM, Marwick JA, Anderson CS, Szulakowski P, Biswas SK, Bauter MR, Kilty I, Rahman I: Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. Faseb J 2004.
  • [72]Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD: Interleukin-13: Central Mediator of Allergic Asthma. Science 1998, 282:2258-2261.
  • [73]Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA: Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999, 103:779-788.
  • [74]Xu X, Rijcken B, Schouten JP, Weiss ST: Airways responsiveness and development and remission of chronic respiratory symptoms in adults. Lancet 1997, 350:1431-1434.
  • [75]Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese R.J. J, Chapman H.A. J, Shapiro SD, Elias JA: Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest 2000, 106:1081-1093.
  • [76]Cano E, Mahadevan LC: Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 1995, 20:117-122.
  • [77]Zhang Y, Feng XH, Derynck R: Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-[beta]-induced transcription. Nature 1998, 394:909-913.
  • [78]Groneberg DA, Wiegand S, Dinh QT, Peiser C, Springer J, Fischer A: Expression of immediate early genes in sensory ganglia. Neurochem Res 2001, 26:1113-1117.
  • [79]Eynott PR, Nath P, Leung SY, Adcock IM, Bennett BL, Chung KF: Allergen-induced inflammation and airway epithelial and smooth muscle cell proliferation: role of Jun N-terminal kinase. Br J Pharmacol 2003, 140:1373-1380.
  • [80]Groneberg DA, Peiser C, Dinh QT, Springer J, Fischer A: Abundant expression of c-Jun in guinea pig sympathetic ganglia under basal conditions and allergen challenge. Lung 2002, 180:221-228.
  • [81]Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, Evan G: Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 1997, 385:544-548.
  • [82]Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME: Opposing Effects of ERK and JNK-p38 MAP Kinases on Apoptosis. Science 1995, 270:1326-1331.
  • [83]Meshi B, Vitalis TZ, Ionescu D, Elliott WM, Liu C, Wang XD, Hayashi S, Hogg JC: Emphysematous Lung Destruction by Cigarette Smoke . The Effects of Latent Adenoviral Infection on the Lung Inflammatory Response. Am J Respir Cell Mol Biol 2002, 26:52-57.
  • [84]Ogawa E, Elliott WM, Hughes F, Eichholtz TJ, Hogg JC, Hayashi S: Latent adenoviral infection induces production of growth factors relevant to airway remodeling in COPD. Am J Physiol Lung Cell Mol Physiol 2004, 286:L189-197.
  • [85]Elliott WM, Hayashi S, Hogg JC: Immunodetection of adenoviral E1A proteins in human lung tissue. Am J Respir Cell Mol Biol 1995, 12:642-648.
  • [86]Matsuse T, Hayashi S, Kuwano K, Keunecke H, Jefferies WA, Hogg JC: Latent adenoviral infection in the pathogenesis of chronic airways obstruction. Am Rev Respir Dis 1992, 146:177-184.
  • [87]Vitalis TZ, Keicho N, Itabashi S, Hayashi S, Hogg JC: A model of latent adenovirus 5 infection in the guinea pig (Cavia porcellus). Am J Respir Cell Mol Biol 1996, 14:225-231.
  • [88]Keicho N, Elliott WM, Hogg JC, Hayashi S: Adenovirus E1A gene dysregulates ICAM-1 expression in transformed pulmonary epithelial cells. Am J Respir Cell Mol Biol 1997, 16:23-30.
  • [89]Finlay GA, O'Donnell MD, O'Connor CM, Hayes JP, FitzGerald MX: Elastin and collagen remodeling in emphysema. A scanning electron microscopy study. Am J Pathol 1996, 149:1405-1415.
  • [90]Lim SAM, Roche NICOLAS, Oliver BRIANG, Mattos WALDO, Barnes PETERJ, Fan Chung K: Balance of Matrix Metalloprotease-9 and Tissue Inhibitor of Metalloprotease-1 from Alveolar Macrophages in Cigarette Smokers . Regulation by Interleukin-10. Am J Respir Crit Care Med 2000, 162:1355-1360.
  • [91]Silverman EK, Chapman HA, Drazen JM, Weiss ST, Rosner B, Campbell EJ, O'DONNELL WJ, Reilly JJ, Ginns L, Mentzer et : Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med 1998, 157:1770-1778.
  • [92]McCloskey SC, Patel BD, Hinchliffe SJ, Reid ED, Wareham NJ, Lomas DA: Siblings of patients with severe chronic obstructive pulmonary disease have a significant risk of airflow obstruction. Am J Respir Crit Care Med 2001, 164:1419-1424.
  • [93]Sandford AJ, Silverman EK: Chronic obstructive pulmonary disease. 1: Susceptibility factors for COPD the genotype-environment interaction. Thorax 2002, 57:736-741.
  • [94]Minematsu N, Nakamura H, Tateno H, Nakajima T, Yamaguchi K: Genetic Polymorphism in Matrix Metalloproteinase-9 and Pulmonary Emphysema. Biochem Biophys Res Commun 2001, 289:116-119.
  • [95]Klein W, Rohde G, Arinir U, Hagedorn M, Durig N, Schultze-Werninghaus G, Epplen JT: A promotor polymorphism in the Interleukin 11 gene is associated with chronic obstructive pulmonary disease. Electrophoresis 2004, 25:804-808.
  • [96]Wu L, Chau J, Young RP, Pokorny V, Mills GD, Hopkins R, McLean L, Black PN: Transforming growth factor-beta1 genotype and susceptibility to chronic obstructive pulmonary disease. Thorax 2004, 59:126-129.
  • [97]Ito I, Nagai S, Hoshino Y, Muro S, Hirai T, Tsukino M, Mishima M: Risk and severity of COPD is associated with the group-specific component of serum globulin 1F allele. Chest 2004, 125:63-70.
  • [98]Adler A, Cieslewicz G, Irvin CG: Unrestrained plethysmography is an unreliable measure of airways responsiveness in BALB/c and C57BL6 mice. J Appl Physiol 2004., In Press
  • [99]Wright JL, Churg A: Cigarette smoke causes physiologic and morphologic changes of emphysema in the guinea pig. Am Rev Respir Dis 1990, 142:1422-1428.
  • [100]Wright JL: The importance of ultramicroscopic emphysema in cigarette smoke-induced lung disease. Lung 2001, 179:71-81.
  • [101]March TH, Barr EB, Finch GL, Hahn FF, Hobbs CH, Menache MG, Nikula KJ: Cigarette smoke exposure produces more evidence of emphysema in B6C3F1 mice than in F344 rats. Toxicol Sci 1999, 51:289-299.
  • [102]Dhami R, Gilks B, Xie C, Zay K, Wright JL, Churg A: Acute Cigarette Smoke-Induced Connective Tissue Breakdown Is Mediated by Neutrophils and Prevented by alpha 1-Antitrypsin. Am J Respir Cell Mol Biol 2000, 22:244-252.
  • [103]Pauwels RA, Lofdahl CG, Laitinen LA, Schouten JP, Postma DS, Pride NB, Ohlsson SV: Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. N Engl J Med 1999, 340:1948-1953.
  • [104]Culpitt SV, Rogers DF: Evaluation of current pharmacotherapy of chronic obstructive pulmonary disease. Expert Opin Pharmacother 2000, 1:1007-1020.
  • [105]Ito K, Barnes PJ, Adcock IM: Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 2000, 20:6891-6903.
  • [106]Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ: Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 2004, 200:689-695.
  • [107]Shore S, Kobzik L, Long NC, Skornik W, Van Staden CJ, Boulet L, Rodger IW, Pon DJ: Increased airway responsiveness to inhaled methacholine in a rat model of chronic bronchitis. Am J Respir Crit Care Med 1995, 151:1931-1938.
  • [108]Kodavanti UP, Jackson MC, Ledbetter AD, Starcher BC, Evansky PA, Harewood A, Winseta DW, Costa DL: The combination of elastase and sulfur dioxide exposure causes COPD-like lesions in the rat. Chest 2000, 117:299S-302S.
  • [109]Man SF, Hulbert WC, Man G, Mok K, Williams DJ: Effects of SO2 exposure on canine pulmonary epithelial functions. Exp Lung Res 1989, 15:181-198.
  • [110]Miller ML, Andringa A, Rafales L, Vinegar A: Effect of exposure to 500 ppm sulfur dioxide on the lungs of the ferret. Respiration 1985, 48:346-354.
  • [111]Vai F, Fournier MF, Lafuma JC, Touaty E, Pariente R: SO2-induced bronchopathy in the rat: abnormal permeability of the bronchial epithelium in vivo and in vitro after anatomic recovery. Am Rev Respir Dis 1980, 121:851-858.
  • [112]Jany B, Gallup M, Tsuda T, Basbaum C: Mucin gene expression in rat airways following infection and irritation. Biochem Biophys Res Commun 1991, 181:1-8.
  • [113]Lightowler NM, Williams JR: Tracheal mucus flow rates in experimental bronchitis in rats. Br J Exp Pathol 1969, 50:139-149.
  • [114]Reid LM: Measurement of human bronchial glands in chronic bronchitis: experimental study of the response of the bronchial tree to irritation; types of emphysema in chronic bronchitis. Am Rev Respir Dis 1961, 83:416-417.
  • [115]Clark JN, Dalbey WE, Stephenson KB: Effect of sulfur dioxide on the morphology and mucin biosynthesis by the rat trachea. J Environ Pathol Toxicol 1980, 4:197-207.
  • [116]Farone A, Huang S, Paulauskis J, Kobzik L: Airway neutrophilia and chemokine mRNA expression in sulfur dioxide-induced bronchitis. Am J Respir Cell Mol Biol 1995, 12:345-350.
  • [117]Drazen JM, Takebayashi T, Long NC, De Sanctis GT, Shore SA: Animal models of asthma and chronic bronchitis. Clin Exp Allergy 1999, 29 Suppl 2:37-47.
  • [118]Springer J, Groneberg DA, Pregla R, Fischer A: Inflammatory cells as source of tachykinin-induced mucus secretion in chronic bronchitis. Regul Pept 2004., In Press
  • [119]Springer J, Amadesi S, Trevisani M, Harrison S, Dinh QT, McGregor GP, Fischer A, Geppetti P, Groneberg DA: Effects of alpha calcitonin gene-related peptide in human bronchial smooth muscle and pulmonary artery. Regul Pept 2004, 118:127-134.
  • [120]Long NC, Abraham J, Kobzik L, Weller EA, Krishna Murthy GG, Shore SA: Respiratory tract inflammation during the induction of chronic bronchitis in rats: role of C-fibres. Eur Respir J 1999, 14:46-56.
  • [121]Long NC, Martin JG, Pantano R, Shore SA: Airway hyperresponsiveness in a rat model of chronic bronchitis: role of C fibers. Am J Respir Crit Care Med 1997, 155:1222-1229.
  • [122]Holroyd KJ, Eleff SM, Zhang LY, Jakab GJ, Kleeberger SR: Genetic modeling of susceptibility to nitrogen dioxide-induced lung injury in mice. Am J Physiol 1997, 273:L595-602.
  • [123]Barth PJ, Muller B: Effects of nitrogen dioxide exposure on Clara cell proliferation and morphology. Pathol Res Pract 1999, 195:487-493.
  • [124]Rombout PJ, Dormans JA, Marra M, van Esch GJ: Influence of exposure regimen on nitrogen dioxide-induced morphological changes in the rat lung. Environ Res 1986, 41:466-480.
  • [125]Parkinson DR, Stephens RJ: Morphological surface changes in the terminal bronchiolar region of NO2-exposed rat lung. Environ Res 1973, 6:37-51.
  • [126]Foster JR, Cottrell RC, Herod IA, Atkinson HA, Miller K: A comparative study of the pulmonary effects of NO2 in the rat and hamster. Br J Exp Pathol 1985, 66:193-204.
  • [127]Azoulay-Dupuis E, Torres M, Soler P, Moreau J: Pulmonary NO2 toxicity in neonate and adult guinea pigs and rats. Environ Res 1983, 30:322-339.
  • [128]Kleinerman J, Ip MP, Gordon RE: The reaction of the respiratory tract to chronic NO2 exposure. Monogr Pathol 1985, 200-210.
  • [129]Wegmann M, Renz H, Herz U: Long-term NO2 exposure induces pulmonary inflammation and progressive development of airflow obstruction in C57BL/6 mice: a mouse model for chronic obstructive pulmonary disease? Pathobiology 2002, 70:284-286.
  • [130]Mudway IS, Kelly FJ: Ozone and the lung: a sensitive issue. Mol Aspects Med 2000, 21:1-48.
  • [131]Haddad EB, Salmon M, Sun J, Liu S, Das A, Adcock I, Barnes PJ, Chung KF: Dexamethasone inhibits ozone-induced gene expression of macrophage inflammatory protein-2 in rat lung. FEBS Lett 1995, 363:285-288.
  • [132]Sun J, Chung KF: Airway inflammation despite loss of bronchial hyper-responsiveness after multiple ozone exposures. Respir Med 1997, 91:47-55.
  • [133]Haddad EB, Liu SF, Salmon M, Robichaud A, Barnes PJ, Chung KF: Expression of inducible nitric oxide synthase mRNA in Brown Norway rats exposed to ozone: effect of dexamethasone. Eur J Pharmacol 1995, 293:287-290.
  • [134]Tsukagoshi H, Haddad EB, Sun J, Barnes PJ, Chung KF: Ozone-induced airway hyperresponsiveness: role of superoxide anions, NEP, and BK receptors. J Appl Physiol 1995, 78:1015-1022.
  • [135]Haddad EB, Salmon M, Koto H, Barnes PJ, Adcock I, Chung KF: Ozone induction of cytokine-induced neutrophil chemoattractant (CINC) and nuclear factor-kappa b in rat lung: inhibition by corticosteroids. FEBS Lett 1996, 379:265-268.
  • [136]Snider GL: Experimental studies on emphysema and chronic bronchial injury. Eur J Respir Dis Suppl 1986, 146:17-35.
  • [137]Harkema JR, Wagner JG: Non-allergic models of mucous cell metaplasia and mucus hypersecretion in rat nasal and pulmonary airways. Novartis Found Symp 2002, 248:181-97; discussion 197-200, 277-82.
  • [138]Albrecht C, Adolf B, Weishaupt C, Hohr D, Zeittrager I, Friemann J, Borm PJ: Clara-cell hyperplasia after quartz and coal-dust instillation in rat lung. Inhal Toxicol 2001, 13:191-205.
  • [139]Ernst H, Rittinghausen S, Bartsch W, Creutzenberg O, Dasenbrock C, Gorlitz BD, Hecht M, Kairies U, Muhle H, Muller M, Heinrich U, Pott F: Pulmonary inflammation in rats after intratracheal instillation of quartz, amorphous SiO2, carbon black, and coal dust and the influence of poly-2-vinylpyridine-N-oxide (PVNO). Exp Toxicol Pathol 2002, 54:109-126.
  • [140]Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V: The pulmonary toxicology of ultrafine particles. J Aerosol Med 2002, 15:213-220.
  • [141]Donaldson K, Stone V, Borm PJ, Jimenez LA, Gilmour PS, Schins RP, Knaapen AM, Rahman I, Faux SP, Brown DM, MacNee W: Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med 2003, 34:1369-1382.
  • [142]Churg A, Zay K, Li K: Mechanisms of mineral dust-induced emphysema. Environ Health Perspect 1997, 105 Suppl 5:1215-1218.
  • [143]Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandstrom T, Dahlen SE: Health effects of diesel exhaust emissions. Eur Respir J 2001, 17:733-746.
  • [144]Ma JY, Ma JK: The dual effect of the particulate and organic components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory responses and metabolic enzymes. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2002, 20:117-147.
  • [145]Lim S, Groneberg D, Fischer A, Oates T, Caramori G, Mattos W, Adcock I, Barnes PJ, Chung KF: Expression of heme oxygenase isoenzymes 1 and 2 in normal and asthmatic airways: effect of inhaled corticosteroids. Am J Respir Crit Care Med 2000, 162:1912-1918.
  • [146]Al-Humadi NH, Siegel PD, Lewis DM, Barger MW, Ma JY, Weissman DN, Ma JK: The effect of diesel exhaust particles (DEP) and carbon black (CB) on thiol changes in pulmonary ovalbumin allergic sensitized Brown Norway rats. Exp Lung Res 2002, 28:333-349.
  • [147]Snider GL, Lucey EC, Faris B, Jung-Legg Y, Stone PJ, Franzblau C: Cadmium-chloride-induced air-space enlargement with interstitial pulmonary fibrosis is not associated with destruction of lung elastin. Implications for the pathogenesis of human emphysema. Am Rev Respir Dis 1988, 137:918-923.
  • [148]Niewoehner DE, Hoidal JR: Lung fibrosis and emphysema: divergent responses to a common injury? Science 1982, 217:359-360.
  • [149]Mahadeva R, Shapiro SD: Chronic obstructive pulmonary disease * 3: Experimental animal models of pulmonary emphysema. Thorax 2002, 57:908-914.
  • [150]Snider GL: Emphysema: The first two centuries-and beyond: A historical overview, with suggestions for future research: Part 2. Am Rev Respir Dis 1992, 146:1615-1622.
  • [151]Snider GL, Lucey EC, Stone PJ: Animal models of emphysema. Am Rev Respir Dis 1986, 133:149-169.
  • [152]Massaro GD, Massaro D: Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nat Med 1997, 3:675-677.
  • [153]Massaro GD, Massaro D, Chambon P: Retinoic acid receptor-alpha regulates pulmonary alveolus formation in mice after, but not during, perinatal period. Am J Physiol Lung Cell Mol Physiol 2003, 284:L431-3.
  • [154]Hind M, Maden M: Retinoic acid induces alveolar regeneration in the adult mouse lung. Eur Respir J 2004, 23:20-27.
  • [155]Fujita M, Ye Q, Ouchi H, Nakashima N, Hamada N, Hagimoto N, Kuwano K, Mason RJ, Nakanishi Y: Retinoic acid fails to reverse emphysema in adult mouse models. Thorax 2004, 59:224-230.
  • [156]Mao JT, Goldin JG, Dermand J, Ibrahim G, Brown MS, Emerick A, McNitt-Gray MF, Gjertson DW, Estrada F, Tashkin DP, Roth MD: A pilot study of all-trans-retinoic acid for the treatment of human emphysema. Am J Respir Crit Care Med 2002, 165:718-723.
  • [157]Kuhn C, Yu SY, Chraplyvy M, Linder HE, Senior RM: The induction of emphysema with elastase. II. Changes in connective tissue. Lab Invest 1976, 34:372-380.
  • [158]Kuhn C, Starcher BC: The effect of lathyrogens on the evolution of elastase-induced emphysema. Am Rev Respir Dis 1980, 122:453-460.
  • [159]Lucey EC, Keane J, Kuang PP, Snider GL, Goldstein RH: Severity of elastase-induced emphysema is decreased in tumor necrosis factor-alpha and interleukin-1beta receptor-deficient mice. Lab Invest 2002, 82:79-85.
  • [160]Martorana PA, van Even P, Gardi C, Lungarella G: A 16-month study of the development of genetic emphysema in tight-skin mice. Am Rev Respir Dis 1989, 139:226-232.
  • [161]Ranga V, Grahn D, Journey TM: Morphologic and phenotypic analysis of an outcross line of blotchy mouse. Exp Lung Res 1983, 4:269-279.
  • [162]Martorana PA, Brand T, Gardi C, van Even P, de Santi MM, Calzoni P, Marcolongo P, Lungarella G: The pallid mouse. A model of genetic alpha 1-antitrypsin deficiency. Lab Invest 1993, 68:233-241.
  • [163]Shapiro SD: Animal models for chronic obstructive pulmonary disease: age of klotho and marlboro mice. Am J Respir Cell Mol Biol 2000, 22:4-7.
  • [164]Shapiro SD: Animal models for COPD. Chest 2000, 117:223S-7S.
  • [165]Rubio-Aliaga I, Frey I, Boll M, Groneberg DA, Eichinger HM, Balling R, Daniel H: Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological role in the kidney. Mol Cell Biol 2003, 23:3247-3252.
  • [166]Kerzel S, Path G, Nockher WA, Quarcoo D, Raap U, Groneberg DA, Dinh QT, Fischer A, Braun A, Renz H: Pan-neurotrophin receptor p75 contributes to neuronal hyperreactivity and airway inflammation in a murine model of experimental asthma. Am J Respir Cell Mol Biol 2003, 28:170-178.
  • [167]Wendel DP, Taylor DG, Albertine KH, Keating MT, Li DY: Impaired Distal Airway Development in Mice Lacking Elastin. Am J Respir Cell Mol Biol 2000, 23:320-326.
  • [168]Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, Cheng CF, Kobuke K, Dalton N, Takada Y, Tashiro K, Ross Jr J, Honjo T, Chien KR: Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 2002, 415:171-175.
  • [169]Bostrom H, Willetts K, Pekny M, Leveen P, Lindahl P, Hedstrand H, Pekna M, Hellstrom M, Gebre-Medhin S, Schalling M, Nilsson M, Kurland S, Tornell J, Heath JK, Betsholtz C: PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 1996, 85:863-873.
  • [170]Lindahl P, Karlsson L, Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C: Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 1997, 124:3943-3953.
  • [171]Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD, Dolganov G, Glick A, Sheppard D: Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature 2003, 422:169-173.
  • [172]Weinstein M, Xu X, Ohyama K, Deng CX: FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 1998, 125:3615-3623.
  • [173]Yoshida M, Korfhagen TR, Whitsett JA: Surfactant Protein D Regulates NF-{{kappa}}B and Matrix Metalloproteinase Production in Alveolar Macrophages via Oxidant-Sensitive Pathways. J Immunol 2001, 166:7514-7519.
  • [174]Leco KJ, Waterhouse P, Sanchez OH, Gowing KLM, Poole AR, Wakeham A, Mak TW, Khokha R: Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J Clin Invest 2001, 108:817-829.
  • [175]Senior RM, Griffin GL, Mecham RP: Chemotactic activity of elastin-derived peptides. J Clin Invest 1980, 66:859-862.
  • [176]Hunninghake GW, Davidson JM, Rennard S, Szapiel S, Gadek JE, Crystal RG: Elastin fragments attract macrophage precursors to diseased sites in pulmonary emphysema. Science 1981, 212:925-927.
  • [177]Wittels EH, Coalson JJ, Welch MH, Guenter CA: Pulmonary intravascular leukocyte sequestration. A potential mechanism of lung injury. Am Rev Respir Dis 1974, 109:502-509.
  • [178]Corteling R, Wyss D, Trifilieff A: In vivo models of lung neutrophil activation. Comparison of mice and hamsters. BMC Pharmacol 2002, 2:1. BioMed Central Full Text
  • [179]Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF: Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 2000, 106:1311-1319.
  • [180]Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N: VEGF is required for growth and survival in neonatal mice. Development 1999, 126:1149-1159.
  • [181]Kasahara YASUNORI, Tuder RUBINM, Cool CARLYNED, Lynch DAVIDA, Flores SONIAC, Voelkel NORBERTF: Endothelial Cell Death and Decreased Expression of Vascular Endothelial Growth Factor and Vascular Endothelial Growth Factor Receptor 2 in Emphysema. Am J Respir Crit Care Med 2001, 163:737-744.
  文献评价指标  
  下载次数:39次 浏览次数:20次