Molecular Neurodegeneration | |
Epigenetic regulation of adult neural stem cells: implications for Alzheimer’s disease | |
Bart PF Rutten1  Daniel LA van den Hove5  Paul D Coleman6  Paul J Lucassen6  Jonathan Mill2  Diego F Mastroeni2  Katie Lunnon2  Harry WM Steinbusch5  Samia Joca3  Caroline Biojone3  Marco P Boks4  Mark van den Hurk5  Gunter Kenis5  Konstantinos Kompotis5  Roy Lardenoije5  Marijn Schouten6  Emma van Bodegraven6  Carlos P Fitzsimons6  | |
[1] Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands;University of Exeter Medical School, RILD Level 4, Barrack Road, University of Exeter, Devon, UK;School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil;Department Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands;Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHENS), Maastricht University, Maastricht, the Netherlands;Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands | |
关键词: Induced pluripotent stem cell; Stem cell; MicroRNAs; Histone modifications; DNA methylation; Alzheimer’s disease; Epigenetics; Adult neurogenesis; | |
Others : 861312 DOI : 10.1186/1750-1326-9-25 |
|
received in 2014-05-10, accepted in 2014-06-06, 发布年份 2014 | |
【 摘 要 】
Experimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those encoding for small non-coding RNAs, indicating a complex interplay between various epigenetic factors and cellular functions.
Previous studies had indicated that in addition to the neuropathology in Alzheimer’s disease (AD), plasticity-related changes are observed in brain areas with ongoing neurogenesis, like the hippocampus and subventricular zone. Given the role of stem cells e.g. in hippocampal functions like cognition, and given their potential for brain repair, we here review the epigenetic mechanisms relevant for NSCs and AD etiology. Understanding the molecular mechanisms involved in the epigenetic regulation of adult NSCs will advance our knowledge on the role of adult neurogenesis in degeneration and possibly regeneration in the AD brain.
【 授权许可】
2014 Fitzsimons et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140725000413179.pdf | 431KB | download |
【 参考文献 】
- [1]Lim DA, Huang YC, Alvarez-Buylla A: The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurg Clin N Am 2007, 18:81-92.
- [2]Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH: Neurogenesis in the adult human hippocampus. Nat Med 1998, 4:1313-1317.
- [3]Gage FH: Mammalian neural stem cells. Science (80-) 2000, 287:1433-1438.
- [4]Garzón-Muvdi T, Quiñones-Hinojosa A: Neural stem cell niches and homing: recruitment and integration into functional tissues. ILAR J 2009, 51:3-23.
- [5]Van den Driesche S, Sharpe RM, Saunders PTK, Mitchell RT: Regulation of the germ stem cell niche as the foundation for adult spermatogenesis: A role for miRNAs? Semin Cell Dev Biol 2014, 29:76-83.
- [6]Januschke J, Näthke I: Stem cell decisions: A twist of fate or a niche market? Semin Cell Dev Biolin press
- [7]Shihabuddin LS, Horner PJ, Ray J, Gage FH: Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 2000, 20:8727-8735.
- [8]Battista D, Ferrari CC, Gage FH, Pitossi FJ: Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci 2006, 23:83-93.
- [9]Wurmser AE, Palmer TD, Gage FH: Cellular interactions in the stem cell niche. Science 2004, 304:1253-1255.
- [10]Palmer TD, Willhoite AR, Gage FH: Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000, 425:479-494.
- [11]Mirshekar-Syahkal B, Fitch SR, Ottersbach K: From greenhouse to garden: The changing soil of the hematopoietic stem cell microenvironment during development. Stem Cellsin press
- [12]Ghiaur G, Yegnasubramanian S, Perkins B, Gucwa JL, Gerber JM, Jones RJ: Regulation of human hematopoietic stem cell self-renewal by the microenvironment’s control of retinoic acid signaling. Proc Natl Acad Sci U S A 2013, 110:16121-16126.
- [13]Chen S, Lewallen M, Xie T: Adhesion in the stem cell niche: biological roles and regulation. Development 2013, 140:255-265.
- [14]Oatley JM, Brinster RL: The germline stem cell niche unit in mammalian testes. Physiol Rev 2012, 92:577-595.
- [15]Zhao C, Deng W, Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell 2008, 132:645-660.
- [16]Ma DK, Marchetto MC, Guo JU, Ming G, Gage FH, Song H: Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 2010, 13:1338-1344.
- [17]Rotschafer JH, Hu S, Little M, Erickson M, Low WC, Cheeran MCJ: Modulation of neural stem/progenitor cell proliferation during experimental Herpes Simplex encephalitis is mediated by differential FGF-2 expression in the adult brain. Neurobiol Dis 2013, 58:144-155.
- [18]Acosta S, Jernberg J, Sanberg CD, Sanberg PR, Small BJ, Gemma C, Bickford PC: NT-020, a natural therapeutic approach to optimize spatial memory performance and increase neural progenitor cell proliferation and decrease inflammation in the aged rat. Rejuvenation Res 2010, 13:581-588.
- [19]Lazarov O, Marr RA: Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 2010, 223:267-281.
- [20]Ohab J, Fleming S: A neurovascular niche for neurogenesis after stroke. J Neurosci 2006, 26:13007-13016.
- [21]Mu Y, Gage FH: Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 2011, 6:85.
- [22]Winner B, Kohl Z, Gage FH: Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 2011, 33:1139-1151.
- [23]Kaneko N, Sawamoto K: Adult neurogenesis and its alteration under pathological conditions. Neurosci Res 2009, 63:155-164.
- [24]Ming G-L, Song H: Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011, 70:687-702.
- [25]Mu Y, Lee SW, Gage FH: Signaling in adult neurogenesis. Curr Opin Neurobiol 2010, 20:416-423.
- [26]Alvarez-Buylla A, Lim DA: For the long run: maintaining germinal niches in the adult brain. Neuron 2004, 41:683-686.
- [27]Ma DK, Ming G-L, Song H: Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr Opin Neurobiol 2005, 15:514-520.
- [28]Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A: Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999, 97:703-716.
- [29]Lim DA, Alvarez-Buylla A: Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci U S A 1999, 96:7526-7531.
- [30]Kempermann G, Jessberger S, Steiner B, Kronenberg G: Milestones of neuronal development in the adult hippocampus. Trends Neurosci 2004, 27:447-452.
- [31]Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, Behrens W, Von Der Kempermann G: Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 2003, 24:603-613.
- [32]Seidenfaden R, Desoeuvre A, Bosio A, Virard I, Cremer H: Glial conversion of SVZ-derived committed neuronal precursors after ectopic grafting into the adult brain. Mol Cell Neurosci 2006, 32:187-198.
- [33]Jablonska B, Aguirre A, Raymond M, Szabo G, Kitabatake Y, Sailor K a, Ming G-L, Song H, Gallo V: Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat Neurosci 2010, 13:541-550.
- [34]Shen Y, Mishra R, Mani S, Meiri , Karina F: Both cell-autonomous and cell non-autonomous functions of GAP-43 are required for normal patterning of the cerebellum in vivo. Cerebellum 2008, 7:451-466.
- [35]Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S: Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 2004, 304:1338-1340.
- [36]Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F: A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008, 3:279-288.
- [37]Culver JC, Vadakkan TJ, Dickinson ME: A specialized microvascular domain in the mouse neural stem cell niche. PLoS One 2013, 8:e53546.
- [38]Goldberg JS, Hirschi KK: Diverse roles of the vasculature within the neural stem cell niche. Regen Med 2009, 4:879-897.
- [39]Ramírez-Castillejo C, Sánchez-Sánchez F, Andreu-Agulló C, Ferrón S, Aroca-Aguilar J, Sánchez P, Mira H, Escribano J, Fariñas I: Pigment epithelium–derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 2006, 9:331-339.
- [40]Gómez-Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C, Lovell-Badge R: Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci U S A 2012, 109:1317-1322.
- [41]Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A: Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 2008, 3:265-278.
- [42]Doetsch F, Alvarez-Buylla A: Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A 1996, 93:14895-14900.
- [43]Sanai N, Nguyen T, Ihrie R, Mirzadeh Z, Tsai H, Wong M, Gupta N, Berger M, Huang E, Garcia-Verdugo J, Rowitch D, Alvarez-Buylla A: Corridors of migrating neurons in the human brain and their decline during infancy. Nature 2011, 478:382-386.
- [44]Whitman MC, Fan W, Rela L, Rodriguez-Gil DJ, Greer CA: Blood vessels form a migratory scaffold in the rostral migratory stream. J Comp Neurol 2009, 516:94-104.
- [45]Lacar B, Herman P, Hartman NW, Hyder F, Bordey A: S phase entry of neural progenitor cells correlates with increased blood flow in the young subventricular zone. PLoS One 2012, 7:e31960.
- [46]Miyamoto N, Tanaka R, Zhang N, Shimura H, Onodera M, Mochizuki H, Hattori N, Urabe T: Crucial role for Ser133-phosphorylated form of cyclic AMP-responsive element binding protein signaling in the differentiation and survival of neural progenitors under chronic cerebral hypoperfusion. Neuroscience 2009, 162:525-536.
- [47]Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M: Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 2010, 7:483-495.
- [48]Gebara E, Sultan S, Kocher-Braissant J, Toni N: Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging. Front Neurosci 2013, 7:145.
- [49]Mann JR: Epigenetics and memigenetics. Cell Mol Life Sci 2014, 71:1117-1122.
- [50]Bird A: Perceptions of epigenetics. Nature 2007, 447:396-398.
- [51]Hsieh J, Eisch AJ: Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind. Neurobiol Dis 2010, 39:73-84.
- [52]Handel AE, Ebers GC, Ramagopalan SV: Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med 2010, 16:7-16.
- [53]Hu X-L, Wang Y, Shen Q: Epigenetic control on cell fate choice in neural stem cells. Protein Cell 2012, 3:278-290.
- [54]Ariff IM, Mitra A, Basu A: Epigenetic regulation of self-renewal and fate determination in neural stem cells. J Neurosci Res 2012, 90:529-539.
- [55]Chen T, Ueda Y, Dodge JE, Wang Z, Li E: Establishment and Maintenance of Genomic Methylation Patterns in Mouse Embryonic Stem Cells by Dnmt3a and Dnmt3b. Mol Cell Biol 2003, 23:5594-5605.
- [56]Jones P a, Liang G: Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009, 10:805-811.
- [57]Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird a P, Jaenisch R: Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 2000, 97:5237-5242.
- [58]Feil R, Fraga MF: Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 2011, 13:97-109.
- [59]Lucassen PJ, Naninck EFG, van Goudoever JB, Fitzsimons C, Joels M, Korosi A: Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 2013, 36:621-631.
- [60]Covic M, Karaca E, Lie DC: Epigenetic regulation of neurogenesis in the adult hippocampus. Heredity (Edinb) 2010, 105:122-134.
- [61]Singh R, Shiue K, Schomberg D, Zhou F: Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant 2009, 18:1197-1211.
- [62]Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y, Sun YE: Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science (80- ) 2010, 329:444-448.
- [63]Chouliaras L, van den Hove DLA, Kenis G, Dela Cruz J, Lemmens MAM, van Os J, Steinbusch HWM, Schmitz C, Rutten BPF: Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain Behav Immun 2011, 25:616-623.
- [64]Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, Lein ES, Eadie BD, Willhoite AR, Muotri AR, Summers RG, Chun J, Lee K-F, Gage FH: Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci U S A 2003, 100:6777-6782.
- [65]Li X, Barkho BZ, Luo Y, Smrt RD, Santistevan NJ, Liu C, Kuwabara T, Gage FH, Zhao X: Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J Biol Chem 2008, 283:27644-27652.
- [66]Zheng W, Nowakowski RS, Vaccarino FM: Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev Neurosci 2004, 26:181-196.
- [67]Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB, Gage FH, Zhao X: Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis 2007, 27:77-89.
- [68]Kohyama J, Kojima T, Takatsuka E, Yamashita T, Namiki J, Hsieh J, Gage FH: Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain. PLoS One 2008, 105:18012-18017.
- [69]Tsujimura K, Abematsu M, Kohyama J, Namihira M, Nakashima K: Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2. Exp Neurol 2009, 219:104-111.
- [70]Ausió J, Paz AM D, Esteller M: MeCP2: the long trip from a chromatin protein to neurological disorders. Trends Mol Medin press
- [71]Skene PJ, Illingworth RS, Webb S, Kerr ARW, James KD, Turner DJ, Andrews R, Bird AP: Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 2010, 37:457-468.
- [72]Bedogni F, Rossi RL, Galli F, Cobolli Gigli C, Gandaglia A, Kilstrup-Nielsen C, Landsberger N: Rett syndrome and the urge of novel approaches to study MeCP2 functions and mechanisms of action. Neurosci Biobehav Revin press
- [73]Guo JU, Su Y, Zhong C, Ming G, Song H: Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011, 145:423-434.
- [74]Van den Hove DLA, Chouliaras L, Rutten BPF: The role of 5-hydroxymethylcytosine in aging and Alzheimer’s disease: current status and prospects for future studies. Curr Alzheimer Res 2012, 9:545-549.
- [75]Hahn M a, Qiu R, Wu X, Li AX, Zhang H, Wang J, Jui J, Jin S-G, Jiang Y, Pfeifer GP, Lu Q: Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep 2013, 3:291-300.
- [76]Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
- [77]Raiber E-A, Beraldi D, Ficz G, Burgess HE, Branco MR, Murat P, Oxley D, Booth MJ, Reik W, Balasubramanian S: Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol 2012, 13:R69.
- [78]He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song C-X, Zhang K, He C, Xu G-L: Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
- [79]Matsubara M, Tanaka T, Terato H, Ohmae E, Izumi S, Katayanagi K, Ide H: Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase. Nucleic Acids Res 2004, 32:5291-5302.
- [80]Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan SK, Handa V, Döderlein G, Maltry N, Wu W, Lyko F, Niehrs C: Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007, 445:671-675.
- [81]Ma DK, Jang M-H, Guo JU, Kitabatake Y, Chang M-L, Pow-Anpongkul N, Flavell R a, Lu B, Ming G-L, Song H: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science (80-) 2009, 323:1074-1077.
- [82]Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR: DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 2008, 135:1201-1212.
- [83]Schmitz K-M, Schmitt N, Hoffmann-Rohrer U, Schäfer A, Grummt I, Mayer C: TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol Cell 2009, 33:344-353.
- [84]Tan L, Xiong L, Xu W, Wu F, Huang N, Xu Y, Kong L, Zheng L, Schwartz L, Shi Y, Shi YG: Genome-wide comparison of DNA hydroxymethylation in mouse embryonic stem cells and neural progenitor cells by a new comparative hMeDIP-seq method. Nucleic Acids Res 2013, 41:e84.
- [85]Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore T a, Marques CJ, Andrews S, Reik W: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011, 473:398-402.
- [86]Khare T, Pai S, Koncevicius K, Pal M, Kriukiene E, Liutkeviciute Z, Irimia M, Jia P, Ptak C, Xia M, Tice R, Tochigi M, Moréra S, Nazarians A, Belsham D, Wong AHC, Blencowe BJ, Wang SC, Kapranov P, Kustra R, Labrie V, Klimasauskas S, Petronis A: 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol 2012, 19:1037-1043.
- [87]Gavin DP, Chase KA, Sharma RP: Active DNA demethylation in post-mitotic neurons: A reason for optimism. Neuropharmacology 2013, 75:233-245.
- [88]Sun G, Fu C, Shen C, Shi Y: Histone deacetylases in neural stem cells and induced pluripotent stem cells. J Biomed Biotechnol 2011, 2011:1-6.
- [89]Sun G, Yu RT, Evans RM, Shi Y: Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A 2007, 104:15282-15287.
- [90]Zhou Q, Dalgard CL, Wynder C, Doughty ML: Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells. BMC Neurosci 2011, 12:50.
- [91]Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004, 101:16659-16664.
- [92]Siebzehnrubl F a, Buslei R, Eyupoglu IY, Seufert S, Hahnen E, Blumcke I: Histone deacetylase inhibitors increase neuronal differentiation in adult forebrain precursor cells. Exp Brain Res 2007, 176:672-678.
- [93]Jawerka M, Colak D, Dimou L, Spiller C, Lagger S, Montgomery RL, Olson EN, Wurst W, Göttlicher M, Götz M: The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biol 2010, 6:93-107.
- [94]Merson TD, Dixon MP, Collin C, Rietze RL, Bartlett PF, Thomas T, Voss AK: The transcriptional coactivator Querkopf controls adult neurogenesis. J Neurosci 2006, 26:11359-11370.
- [95]Qureshi IA, Mehler MF: The emerging role of epigenetics in stroke. Arch Neurol 2011, 68:294-302.
- [96]Fasano CA, Phoenix TN, Kokovay E, Lowry N, Elkabetz Y, Dimos JT, Lemischka IR, Studer L, Temple S: Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev 2009, 23:561-574.
- [97]Zencak D, Lingbeek M, Kostic C, Tekaya M, Tanger E, Hornfeld D, Jaquet M, Munier FL, Schorderet DF, van Lohuizen M, Arsenijevic Y: Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation. J Neurosci 2005, 25:5774-5783.
- [98]Bruggeman SWM, Valk-Lingbeek ME, van der Stoop PPM, Jacobs JJL, Kieboom K, Tanger E, Hulsman D, Leung C, Arsenijevic Y, Marino S, van Lohuizen M: Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev 2005, 19:1438-1443.
- [99]Lim D a, Huang Y-C, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P, Alvarez-Buylla A: Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 2009, 458:529-533.
- [100]Schouten M, Buijink MR, Lucassen PJ, Fitzsimons CP: New neurons in aging brains: molecular control by small non-coding RNAs. Front Neurosci 2012, 6:1-13.
- [101]Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014, 42:D68-D73.
- [102]Volvert M-L, Rogister F, Moonen G, Malgrange B, Nguyen L: MicroRNAs tune cerebral cortical neurogenesis. Cell Death Differ 2012, 19:1573-1581.
- [103]Liu N, Landreh M, Cao K, Abe M, Hendriks G-J, Kennerdell JR, Zhu Y, Wang L-S, Bonini NM: The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 2012, 482:519-523.
- [104]Fineberg SK, Datta P, Stein CS, Davidson BL: MiR-34a represses Numbl in murine neural progenitor cells and antagonizes neuronal differentiation. PLoS One 2012, 7:e38562.
- [105]Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CMP: miR-34a regulates mouse neural stem cell differentiation. PLoS One 2011, 6:e21396.
- [106]Agostini M, Tucci P, Steinert JR, Shalom-Feuerstein R, Rouleau M, Aberdam D, Forsythe ID, Young KW, Ventura A, Concepcion CP, Han Y-C, Candi E, Knight RA, Mak TW, Melino G: microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Natl Acad Sci U S A 2011, 108:21099-21104.
- [107]Lukiw WJ: Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 2007, 18:297-300.
- [108]Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA: Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 2008, 14:27-41.
- [109]Pogue AI, Percy ME, Cui J-G, Li YY, Bhattacharjee S, Hill JM, Kruck TPA, Zhao Y, Lukiw WJ: Up-regulation of NF-kB-sensitive miRNA-125b and miRNA-146a in metal sulfate-stressed human astroglial (HAG) primary cell cultures. J Inorg Biochem 2011, 105:1434-1437.
- [110]Lee YS, Kim HK, Chung S, Kim K-S, Dutta A: Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 2005, 280:16635-16641.
- [111]Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E, Screpanti I, Bozzoni I, Gulino A: Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 2008, 27:2616-2627.
- [112]Cui Y, Xiao Z, Han J, Sun J, Ding W, Zhao Y, Chen B, Li X, Dai J: MiR-125b orchestrates cell proliferation, differentiation and migration in neural stem/progenitor cells by targeting Nestin. BMC Neurosci 2012, 13:116.
- [113]Le MTN, Xie H, Zhou B, Chia PH, Rizk P, Um M, Udolph G, Yang H, Lim B, Lodish HF: MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 2009, 29:5290-5305.
- [114]Pathania M, Torres-Reveron J, Yan L, Kimura T, Lin TV, Gordon V, Teng Z-Q, Zhao X, Fulga TA, Van Vactor D, Bordey A: miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons. PLoS One 2012, 7:e38174.
- [115]Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM, Storm DR: Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 2010, 20:492-498.
- [116]Hansen KF, Sakamoto K, Wayman GA, Impey S, Obrietan K: Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One 2010, 5:e15497.
- [117]Yang D, Li T, Wang Y, Tang Y, Cui H, Tang Y, Zhang X, Chen D, Shen N, Le W: miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci 2012, 125(Pt 7):1673-1682.
- [118]Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, Mandel G, Goodman RH: microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A 2010, 107:20382-20387.
- [119]Abuhatzira L, Makedonski K, Kaufman Y, Razin A, Shemer R: MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production. Epigenetics 2007, 2:214-222.
- [120]Remenyi J, Hunter CJ, Cole C, Ando H, Impey S, Monk CE, Martin KJ, Barton GJ, Hutvagner G, Arthur JSC: Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J 2010, 428:281-291.
- [121]Cheng L-C, Pastrana E, Tavazoie M, Doetsch F: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009, 12:399-408.
- [122]Zhao C, Sun G, Li S, Shi Y: A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009, 16:365-371.
- [123]Zhao C, Sun G, Li S, Lang M-F, Yang S, Li W, Shi Y: MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A 2010, 107:1876-1881.
- [124]Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR: MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 2011, 476:228-231.
- [125]Smrt RD, Szulwach KE, Pfeiffer RL, Li X, Guo W, Pathania M, Teng Z-Q, Luo Y, Peng J, Bordey A, Jin P, Zhao X: MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells 2010, 28:1060-1070.
- [126]Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, Santistevan NJ, Li W, Zhao X, Jin P: Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 2010, 189:127-141.
- [127]Van den Hove DL, Kompotis K, Lardenoije R, Kenis G, Mill J, Steinbusch HW, Lesch K-P, Fitzsimons CP, De Strooper B, Rutten BPF: Epigenetically regulated microRNAs in Alzheimer’s disease. Neurobiol Aging 2014, 35:731-745.
- [128]Liu C, Teng Z, Santistevan N, Szulwach K: Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 2010, 6:433-444.
- [129]American Psychiatric Association: Diagnostic and statistical manual of mental disorders (4th ed., text rev.). 2000.
- [130]Maccioni RB, Muñoz JP, Barbeito L: The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 2001, 32:367-381.
- [131]Fuster-Matanzo A, Llorens-Martín M, Hernández F, Avila J: Role of neuroinflammation in adult neurogenesis and Alzheimer disease: therapeutic approaches. Mediators Inflamm 2013, 2013:1-9.
- [132]Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA: Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 2004, 101:343-347.
- [133]Boekhoorn K, Joels M, Lucassen PJ: Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 2006, 24:1-14.
- [134]Perry EK, Johnson M, Ekonomou A, Perry RH, Ballard C, Attems J: Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol Dis 2012, 47:155-162.
- [135]Crews L, Adame A, Patrick C, Delaney A, Pham E, Rockenstein E, Hansen L, Masliah E: Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci 2010, 30:12252-12262.
- [136]Li B, Yamamori H, Tatebayashi Y, Shafit-Zagardo B, Tanimukai H, Chen S, Iqbal K, Grundke-Iqbal I: Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol 2008, 67:78-84.
- [137]Waldau B, Shetty AK: Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 2008, 65:2372-2384.
- [138]Taupin P: Adult neurogenesis, neural stem cells and Alzheimer’s disease:developments, limitations, problems and promises. Curr Alzheimer Res 2009, 6:461-470.
- [139]Brinton RD, Wang JM: Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer’s disease: allopregnanolone as a proof of concept neurogenic agent. Curr Alzheimer Res 2006, 3:185-190.
- [140]Ziabreva I, Perry E, Perry R, Minger SL, Ekonomou A, Przyborski S, Ballard C: Altered neurogenesis in Alzheimer’s disease. J Psychosom Res 2006, 61:311-316.
- [141]Lilja AM, Röjdner J, Mustafiz T, Thomé CM, Storelli E, Gonzalez D, Unger-Lithner C, Greig NH, Nordberg A, Marutle A: Age-dependent neuroplasticity mechanisms in Alzheimer Tg2576 mice following modulation of brain amyloid-β levels. PLoS One 2013, 8:e58752.
- [142]Li G, Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A, Ring K, Halabisky B, Deng C, Mahley RW, Huang Y: GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell 2009, 5:634-645.
- [143]Brasnjevic I, Lardenoije R, Schmitz C, Kolk N, Dickstein DL, Takahashi H, Hof PR, Steinbusch HWM, Rutten BPF: Region-specific neuron and synapse loss in the hippocampus of APPSL/PS1 knock-in mice. Transl Neurosci 2013, 4:8-19.
- [144]Chen Q, Nakajima A, Choi SH, Xiong X, Sisodia SS, Tang Y-P: Adult neurogenesis is functionally associated with AD-like neurodegeneration. Neurobiol Dis 2008, 29:316-326.
- [145]Morgenstern NA, Giacomini D, Lombardi G, Castaño EM, Schinder AF: Delayed dendritic development in newly generated dentate granule cells by cell-autonomous expression of the amyloid precursor protein. Mol Cell Neurosci 2013, 56:298-306.
- [146]Zhao C, Teng EM, Summers RG, Ming G-L, Gage FH: Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 2006, 26:3-11.
- [147]West RL, Lee JM, Maroun LE: Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 1995, 6:141-146.
- [148]Barrachina M, Ferrer I: DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 2009, 68:880-891.
- [149]Brohede J, Rinde M, Winblad B, Graff C: A DNA methylation study of the amyloid precursor protein gene in several brain regions from patients with familial Alzheimer disease. J Neurogenet 2010, 24:179-181.
- [150]Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M: Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 1999, 70:288-292.
- [151]Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y: The methylation status of cytosines in a tau gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett 1999, 275:89-92.
- [152]Morrison LD, Smith DD, Kish SJ: Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem 1996, 67:1328-1331.
- [153]Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD: Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 2009, 4:e6617.
- [154]Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, Rogers J: Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging 2010, 31:2025-2037.
- [155]Chouliaras L, van den Hove DLA, Kenis G, Keitel S, Hof PR, van Os J, Steinbusch HWM, Schmitz C, Rutten BPF: Prevention of age-related changes in hippocampal levels of 5-methylcytidine by caloric restriction. Neurobiol Aging 2012, 33:1672-1681.
- [156]Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, Steinbusch HWM, Coleman PD, Rutten BPF, van den Hove DLA: Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging 2013, 34:2091-2099.
- [157]Condliffe D, Wong A, Troakes C, Proitsi P, Patel Y, Chouliaras L, Fernandes C, Cooper J, Lovestone S, Schalkwyk LC, Mill J, Lunnon K: Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer’s disease brain. Neurobiol Agingin press
- [158]Chen K-L, Wang SS-S, Yang Y-Y, Yuan R-Y, Chen R-M, Hu C-J: The epigenetic effects of amyloid-beta(1–40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 2009, 378:57-61.
- [159]Siegmund KD, Connor CM, Campan M, Long TI, Weisenberger DJ, Biniszkiewicz D, Jaenisch R, Laird PW, Akbarian S: DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2007, 2:e895.
- [160]Urdinguio RG, Sanchez-Mut JV, Esteller M: Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009, 8:1056-1072.
- [161]Hoyaux D, Decaestecker C, Heizmann CW, Vogl T, Schäfer BW, Salmon I, Kiss R, Pochet R: S100 proteins in Corpora amylacea from normal human brain. Brain Res 2000, 867:280-288.
- [162]Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA: Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett 2003, 541:145-148.
- [163]Bakulski KM, Dolinoy DC, Sartor M a, Paulson HL, Konen JR, Lieberman AP, Albin RL, Hu H, Rozek LS: Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis 2012, 29:571-588.
- [164]Münzel M, Globisch D, Brückl T, Wagner M, Welzmiller V, Michalakis S, Müller M, Biel M, Carell T: Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew Chem Int Ed Engl 2010, 49:5375-5377.
- [165]Song C-X, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen C-H, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C: Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 2011, 29:68-72.
- [166]Morgan AR, Hamilton G, Turic D, Jehu L, Harold D, Abraham R, Hollingworth P, Moskvina V, Brayne C, Rubinsztein DC, Lynch A, Lawlor B, Gill M, O’Donovan M, Powell J, Lovestone S, Williams J, Owen MJ: Association analysis of 528 intra-genic SNPs in a region of chromosome 10 linked to late onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 2008, 147B:727-731.
- [167]Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W: Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease. Proteomics 2012, 12:1261-1268.
- [168]Marques SCF, Lemos R, Ferreiro E, Martins M, de Mendonça A, Santana I, Outeiro TF, Pereira CMF: Epigenetic regulation of BACE1 in Alzheimer’s disease patients and in transgenic mice. Neuroscience 2012, 220:256-266.
- [169]Gräff J, Kim D, Dobbin MM, Tsai L-H: Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 2011, 91:603-649.
- [170]Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A: Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 2010, 328:753-756.
- [171]Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G: Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2010, 35:870-880.
- [172]Guan J-S, Haggarty SJ, Giacometti E, Dannenberg J-H, Joseph N, Gao J, Nieland TJF, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai L-H: HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009, 459:55-60.
- [173]Gräff J, Rei D, Guan J-S, Wang W-Y, Seo J, Hennig KM, Nieland TJF, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai L-H: An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 2012, 483:222-226.
- [174]Bicchi I, Morena F, Montesano S, Polidoro M, Martino S: MicroRNAs and Molecular Mechanisms of Neurodegeneration. Genes 2013, 4:244-263.
- [175]Hébert SS, Sergeant N, Buée L: MicroRNAs and the Regulation of Tau Metabolism. Int J Alzheimers Dis 2012, 2012:1-6.
- [176]Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, Qiang B, Yuan J, Peng X: MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiol Aging 2012, 33:522-534.
- [177]Takeda T: Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 2009, 34:639-659.
- [178]Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, Lee JC, Saunders AJ: MicroRNAs can regulate human APP levels. Mol Neurodegener 2008, 3:10.
- [179]Long JM, Ray B, Lahiri DK: MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem 2012, 287:31298-31310.
- [180]Zhu H-C, Wang L-M, Wang M, Song B, Tan S, Teng J-F, Duan D-X: MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res Bull 2012, 88:596-601.
- [181]Fang M, Wang J, Zhang X, Geng Y, Hu Z, Rudd JA, Ling S, Chen W, Han S: The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 2012, 209:94-105.
- [182]Geekiyanage H, Chan C: MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer’s disease. J Neurosci 2011, 31:14820-14830.
- [183]Wang H, Liu J, Zong Y, Xu Y, Deng W, Zhu H, Liu Y, Ma C, Huang L, Zhang L, Qin C: miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-β type II receptor. Brain Res 2010, 1357:166-174.
- [184]Schonrock N, Humphreys DT, Preiss T, Götz J: Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β. J Mol Neurosci 2012, 46:324-335.
- [185]Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J, Ruprecht K, Paul F, Stähler C, Lang CJ, Meder B, Bartfai T, Meese E, Keller A: A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 2013, 14:R78.
- [186]Wilson RS, Arnold SE, Schneider JA, Kelly JF, Tang Y, Bennett DA: Chronic psychological distress and risk of Alzheimer’s disease in old age. Neuroepidemiology 2006, 27:143-153.
- [187]LaPlant Q, Vialou V, Covington HE, Dumitriu D, Feng J, Warren BL, Maze I, Dietz DM, Watts EL, Iñiguez SD, Koo JW, Mouzon E, Renthal W, Hollis F, Wang H, Noonan MA, Ren Y, Eisch AJ, Bolaños CA, Kabbaj M, Xiao G, Neve RL, Hurd YL, Oosting RS, Fan G, Morrison JH, Nestler EJ: Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 2010, 13:1137-1143.
- [188]Qing H, He G, Ly PTT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen C-H, Zhou W, Wang K, Song W: Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 2008, 205:2781-2789.
- [189]Ogawa O, Zhu X, Lee H-G, Raina A, Obrenovich ME, Bowser R, Ghanbari HA, Castellani RJ, Perry G, Smith MA: Ectopic localization of phosphorylated histone H3 in Alzheimer’s disease: a mitotic catastrophe? Acta Neuropathol 2003, 105:524-528.
- [190]Mastroeni D, Chouliaras L, Grover A, Liang WS, Hauns K, Rogers J, Coleman PD: Reduced RAN expression and disrupted transport between cytoplasm and nucleus; a key event in Alzheimer’s disease pathophysiology. PLoS One 2013, 8:e53349.
- [191]Delacourte A, Buée L: Animal models of Alzheimer’s disease: a road full of pitfalls. Psychol Neuropsychiatr Vieil 2005, 3:261-270.
- [192]German DC, Eisch AJ: Mouse models of Alzheimer’s disease: insight into treatment. Rev Neurosci 2004, 15:353-369.
- [193]Chouliaras L, Sierksma ASR, Kenis G, Prickaerts J, Lemmens MAM, Brasnjevic I, van Donkelaar EL, Martinez-Martinez P, Losen M, De Baets MH, Kholod N, van Leeuwen F, Hof PR, van Os J, Steinbusch HWM, van den Hove DLA, Rutten BPF: Gene-environment interaction research and transgenic mouse models of Alzheimer’s disease. Int J Alzheimers Dis 2010, 2010:1-27.
- [194]Chouliaras L, Rutten BPF, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HWM, van den Hove DLA: Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 2010, 90:498-510.
- [195]Kwok JBJ: Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics 2010, 2:671-682.
- [196]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
- [197]Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861-872.
- [198]Verma A, Verma N: Induced pluripotent stem cells and promises of neuroregenerative medicine. Neurol India 2011, 59:555-557.
- [199]Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LIR, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ: Epigenetic memory in induced pluripotent stem cells. Nature 2010, 467:285-290.
- [200]Wojda U, Kuznicki J: Alzheimer’s disease modeling: ups, downs, and perspectives for human induced pluripotent stem cells. J Alzheimers Dis 2013, 34:563-588.
- [201]Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, Carson CT, Laurent LC, Marsala M, Gage FH, Remes AM, Koo EH, Goldstein LSB: Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 2012, 482:216-220.
- [202]Pyko IV, Nakada M, Sabit H, Teng L, Furuyama N, Hayashi Y, Kawakami K, Minamoto T, Fedulau AS, Hamada J: Glycogen synthase kinase 3β inhibition sensitizes human glioblastoma cells to temozolomide by affecting O6-methylguanine DNA methyltransferase promoter methylation via c-Myc signaling. Carcinogenesis 2013, 34:2206-2217.
- [203]Christmann M, Verbeek B, Roos WP, Kaina B: O(6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta 1816, 2011:179-190.
- [204]Qiang L, Fujita R, Yamashita T, Angulo S, Rhinn H, Rhee D, Doege C, Chau L, Aubry L, Vanti WB, Moreno H, Abeliovich A: Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 2011, 146:359-371.
- [205]Tian C, Liu Q, Ma K, Wang Y, Chen Q, Ambroz R, Klinkebiel DL, Li Y, Huang Y, Ding J, Wu J, Zheng JC: Characterization of induced neural progenitors from skin fibroblasts by a novel combination of defined factors. Sci Rep 2013, 3:1345.
- [206]Capsoni S: β-Amyloid Plaques in a Model for Sporadic Alzheimer’s Disease Based on Transgenic Anti-Nerve Growth Factor Antibodies. Mol Cell Neurosci 2002, 21:15-28.