Retrovirology | |
Opposing regulation of endolysosomal pathways by long-acting nanoformulated antiretroviral therapy and HIV-1 in human macrophages | |
Howard E Gendelman2  JoEllyn McMillan1  Pawel Ciborowski1  Jayme Wiederin1  Dongwei Guo2  Mariluz Araínga1  | |
[1] Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha 68198-5880, NE, USA;Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha 68198-5880, NE, USA | |
关键词: Rab proteins; Endocytic pathways; NanoART; Proteomics; HIV-1; Macrophages; | |
Others : 1131918 DOI : 10.1186/s12977-014-0133-5 |
|
received in 2014-10-22, accepted in 2014-12-19, 发布年份 2015 | |
【 摘 要 】
Background
Long-acting nanoformulated antiretroviral therapy (nanoART) is designed to improve patient regimen adherence, reduce systemic drug toxicities, and facilitate clearance of human immunodeficiency virus type one (HIV-1) infection. While nanoART establishes drug depots within recycling and late monocyte-macrophage endosomes, whether or not this provides a strategic advantage towards viral elimination has not been elucidated.
Results
We applied quantitative SWATH-MS proteomics and cell profiling to nanoparticle atazanavir (nanoATV)-treated and HIV-1 infected human monocyte-derived macrophages (MDM). Native ATV and uninfected cells served as controls. Both HIV-1 and nanoATV engaged endolysosomal trafficking for assembly and depot formation, respectively. Notably, the pathways were deregulated in opposing manners by the virus and the nanoATV, likely by viral clearance. Paired-sample z-scores, of the proteomic data sets, showed up- and down- regulation of Rab-linked endolysosomal proteins. NanoART and native ATV treated uninfected cells showed limited effects. The data was confirmed by Western blot. DAVID and KEGG bioinformatics analyses of proteomic data showed relationships between secretory, mobility and phagocytic cell functions and virus and particle trafficking.
Conclusions
We posit that modulation of endolysosomal pathways by antiretroviral nanoparticles provides a strategic path to combat HIV infection.
【 授权许可】
2015 Araínga et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150303115911267.pdf | 2067KB | download | |
Figure 7. | 42KB | Image | download |
Figure 6. | 133KB | Image | download |
Figure 5. | 35KB | Image | download |
Figure 4. | 39KB | Image | download |
Figure 3. | 53KB | Image | download |
Figure 2. | 133KB | Image | download |
Figure 1. | 139KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Boffito M, Jackson A, Owen A, Becker S: New approaches to antiretroviral drug delivery: challenges and opportunities associated with the use of long-acting injectable agents. Drugs 2014, 74:7-13.
- [2]Puligujja P, Balkundi SS, Kendrick LM, Baldridge HM, Hilaire JR, Bade AN, et al.: Pharmacodynamics of long-acting folic acid-receptor targeted ritonavir-boosted atazanavir nanoformulations. Biomaterials 2015, 41C:141-50.
- [3]Rajoli RK, Back DJ, Rannard S, Freel Meyers CL, Flexner C, Owen A, et al. Physiologically based pharmacokinetic modelling to inform development of intramuscular long-acting nanoformulations for HIV. Clin Pharmacokinet. 2014.
- [4]Spreen WR, Margolis DA, Pottage JC Jr: Long-acting injectable antiretrovirals for HIV treatment and prevention. Curr Opin HIV AIDS 2013, 8:565-71.
- [5]Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, et al.: Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 2009, 183:661-9.
- [6]Gautam N, Puligujja P, Balkundi S, Thakare R, Liu XM, Fox HS, et al.: Pharmacokinetics, biodistribution, and toxicity of folic Acid-coated antiretroviral nanoformulations. Antimicrob Agents Chemother 2014, 58:7510-9.
- [7]Guo D, Zhang G, Wysocki TA, Wysocki BJ, Gelbard HA, Liu XM, et al.: Endosomal trafficking of nanoformulated antiretroviral therapy facilitates drug particle carriage and HIV clearance. J Virol 2014, 88:9504-13.
- [8]Nowacek AS, Balkundi S, McMillan J, Roy U, Martinez-Skinner A, Mosley RL, et al.: Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release 2011, 150:204-11.
- [9]Nowacek AS, McMillan J, Miller R, Anderson A, Rabinow B, Gendelman HE: Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: implications for neuroAIDS therapeutics. J Neuroimmune Pharmacol 2010, 5:592-601.
- [10]Gendelman HE, Gelbard HA: Adjunctive and long-acting nanoformulated antiretroviral therapies for HIV-associated neurocognitive disorders. Curr Opin HIV AIDS 2014, 9:585-90.
- [11]Kadiu I, Nowacek A, McMillan J, Gendelman HE: Macrophage endocytic trafficking of antiretroviral nanoparticles. Nanomedicine (Lond) 2011, 6:975-94.
- [12]Gautam N, Roy U, Balkundi S, Puligujja P, Guo D, Smith N, et al.: Preclinical pharmacokinetics and tissue distribution of long-acting nanoformulated antiretroviral therapy. Antimicrob Agents Chemother 2013, 57:3110-20.
- [13]Roy U, McMillan J, Alnouti Y, Gautum N, Smith N, Balkundi S, et al.: Pharmacodynamic and antiretroviral activities of combination nanoformulated antiretrovirals in HIV-1-infected human peripheral blood lymphocyte-reconstituted mice. J Infect Dis 2012, 206:1577-88.
- [14]Puligujja P, McMillan J, Kendrick L, Li T, Balkundi S, Smith N, et al.: Macrophage folate receptor-targeted antiretroviral therapy facilitates drug entry, retention, antiretroviral activities and biodistribution for reduction of human immunodeficiency virus infections. Nanomedicine 2013, 9:1263-73.
- [15]Haverland NA, Fox HS, Ciborowski P: Quantitative proteomics by SWATH-MS reveals altered expression of nucleic acid binding and regulatory proteins in HIV-1-infected macrophages. J Proteome Res 2014, 13:2109-19.
- [16]Kudoh A, Takahama S, Sawasaki T, Ode H, Yokoyama M, Okayama A, et al.: The phosphorylation of HIV-1 Gag by atypical protein kinase C facilitates viral infectivity by promoting Vpr incorporation into virions. Retrovirology 2014, 11:9. BioMed Central Full Text
- [17]Levine AJ, Panos SE, Horvath S: Genetic, transcriptomic, and epigenetic studies of HIV-associated neurocognitive disorder. J Acquir Immune Defic Syndr 2014, 65:481-503.
- [18]Linde ME, Colquhoun DR, Ubaida Mohien C, Kole T, Aquino V, Cotter R, et al.: The conserved set of host proteins incorporated into HIV-1 virions suggests a common egress pathway in multiple cell types. J Proteome Res 2013, 12:2045-54.
- [19]Schweitzer CJ, Jagadish T, Haverland N, Ciborowski P, Belshan M: Proteomic analysis of early HIV-1 nucleoprotein complexes. J Proteome Res 2013, 12:559-72.
- [20]Chaudhry A, Das SR, Jameel S, George A, Bal V, Mayor S, et al.: HIV-1 Nef induces a Rab11-dependent routing of endocytosed immune costimulatory proteins CD80 and CD86 to the Golgi. Traffic 2008, 9:1925-35.
- [21]Chu H, Wang JJ, Spearman P: Human immunodeficiency virus type-1 gag and host vesicular trafficking pathways. Curr Top Microbiol Immunol 2009, 339:67-84.
- [22]Kadiu I, Gendelman HE: Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and Golgi network. J Proteome Res 2011, 10:3225-38.
- [23]Qi M, Williams JA, Chu H, Chen X, Wang JJ, Ding L, et al.: Rab11-FIP1C and Rab14 direct plasma membrane sorting and particle incorporation of the HIV-1 envelope glycoprotein complex. PLoS Pathog 2013, 9:e1003278.
- [24]Li M, Ablan SD, Miao C, Zheng YM, Fuller MS, Rennert PD, et al.: TIM-family proteins inhibit HIV-1 release. Proc Natl Acad Sci U S A 2014, 111:E3699-707.
- [25]Chen AK, Sengupta P, Waki K, Van Engelenburg SB, Ochiya T, Ablan SD, et al.: MicroRNA binding to the HIV-1 Gag protein inhibits Gag assembly and virus production. Proc Natl Acad Sci U S A 2014, 111:E2676-83.
- [26]Liu C, Zhang X, Huang F, Yang B, Li J, Liu B, et al.: APOBEC3G inhibits microRNA-mediated repression of translation by interfering with the interaction between Argonaute-2 and MOV10. J Biol Chem 2012, 287:29373-83.
- [27]Benaroch P, Billard E, Gaudin R, Schindler M, Jouve M: HIV-1 assembly in macrophages. Retrovirology 2010, 7:29. BioMed Central Full Text
- [28]Welsch S, Groot F, Krausslich HG, Keppler OT, Sattentau QJ: Architecture and regulation of the HIV-1 assembly and holding compartment in macrophages. J Virol 2011, 85:7922-7.
- [29]Tan J, Sattentau QJ: The HIV-1-containing macrophage compartment: a perfect cellular niche? Trends Microbiol 2013, 21:405-12.
- [30]Mlcochova P, Pelchen-Matthews A, Marsh M: Organization and regulation of intracellular plasma membrane-connected HIV-1 assembly compartments in macrophages. BMC Biol 2013, 11:89. BioMed Central Full Text
- [31]Jouve M, Sol-Foulon N, Watson S, Schwartz O, Benaroch P: HIV-1 buds and accumulates in "nonacidic" endosomes of macrophages. Cell Host Microbe 2007, 2:85-95.
- [32]Ono A: Subcellular locations at which HIV-1 assembles. Uirusu 2007, 57:9-18.
- [33]Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M: In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol 2007, 177:329-41.
- [34]Chang Y, Finnemann SC: Tetraspanin CD81 is required for the alpha v beta5-integrin-dependent particle-binding step of RPE phagocytosis. J Cell Sci 2007, 120:3053-63.
- [35]Dijkstra S, Geisert EE Jr, Dijkstra CD, Bar PR, Joosten EA: CD81 and microglial activation in vitro: proliferation, phagocytosis and nitric oxide production. J Neuroimmunol 2001, 114:151-9.
- [36]Takeda Y, Tachibana I, Miyado K, Kobayashi M, Miyazaki T, Funakoshi T, et al.: Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol 2003, 161:945-56.
- [37]Stein MP, Muller MP, Wandinger-Ness A: Bacterial pathogens commandeer Rab GTPases to establish intracellular niches. Traffic 2012, 13:1565-88.
- [38]Tippett E, Cameron PU, Marsh M, Crowe SM: Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection. J Leukoc Biol 2013, 93:913-20.
- [39]Poteryaev D, Datta S, Ackema K, Zerial M, Spang A: Identification of the switch in early-to-late endosome transition. Cell 2010, 141:497-508.
- [40]Collier ME, Mah PM, Xiao Y, Maraveyas A, Ettelaie C: Microparticle-associated tissue factor is recycled by endothelial cells resulting in enhanced surface tissue factor activity. Thromb Haemost 2013, 110:966-76.
- [41]Bastin G, Heximer SP: Rab family proteins regulate the endosomal trafficking and function of RGS4. J Biol Chem 2013, 288:21836-49.
- [42]Gulappa T, Clouser CL, Menon KM: The role of Rab5a GTPase in endocytosis and post-endocytic trafficking of the hCG-human luteinizing hormone receptor complex. Cell Mol Life Sci 2011, 68:2785-95.
- [43]Mendoza P, Ortiz R, Diaz J, Quest AF, Leyton L, Stupack D, et al.: Rab5 activation promotes focal adhesion disassembly, migration and invasiveness in tumor cells. J Cell Sci 2013, 126:3835-47.
- [44]Liu SS, Chen XM, Zheng HX, Shi SL, Li Y: Knockdown of Rab5a expression decreases cancer cell motility and invasion through integrin-mediated signaling pathway. J Biomed Sci 2011, 18:58. BioMed Central Full Text
- [45]Macovei A, Petrareanu C, Lazar C, Florian P, Branza-Nichita N: Regulation of hepatitis B virus infection by Rab5, Rab7, and the endolysosomal compartment. J Virol 2013, 87:6415-27.
- [46]Vitelli R, Santillo M, Lattero D, Chiariello M, Bifulco M, Bruni CB, et al.: Role of the small GTPase Rab7 in the late endocytic pathway. J Biol Chem 1997, 272:4391-7.
- [47]Caillet M, Janvier K, Pelchen-Matthews A, Delcroix-Genete D, Camus G, Marsh M, et al.: Rab7A is required for efficient production of infectious HIV-1. PLoS Pathog 2011, 7:e1002347.
- [48]Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ, et al.: Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 2005, 79:11742-51.
- [49]Amet T, Nonaka M, Dewan MZ, Saitoh Y, Qi X, Ichinose S, et al.: Statin-induced inhibition of HIV-1 release from latently infected U1 cells reveals a critical role for protein prenylation in HIV-1 replication. Microbes Infect 2008, 10:471-80.
- [50]Ullrich O, Reinsch S, Urbe S, Zerial M, Parton RG: Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 1996, 135:913-24.
- [51]Varthakavi V, Smith RM, Martin KL, Derdowski A, Lapierre LA, Goldenring JR, et al.: The pericentriolar recycling endosome plays a key role in Vpu-mediated enhancement of HIV-1 particle release. Traffic 2006, 7:298-307.
- [52]Milev MP, Brown CM, Mouland AJ: Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1. Retrovirology 2010, 7:41. BioMed Central Full Text
- [53]Sandgren KJ, Smed-Sorensen A, Forsell MN, Soldemo M, Adams WC, Liang F, et al.: Human plasmacytoid dendritic cells efficiently capture HIV-1 envelope glycoproteins via CD4 for antigen presentation. J Immunol 2013, 191:60-9.
- [54]Fanales-Belasio E, Moretti S, Fiorelli V, Tripiciano A, Pavone Cossut MR, Scoglio A, et al.: HIV-1 Tat addresses dendritic cells to induce a predominant Th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection. J Immunol 2009, 182:2888-97.
- [55]Fanales-Belasio E, Moretti S, Nappi F, Barillari G, Micheletti F, Cafaro A, et al.: Native HIV-1 Tat protein targets monocyte-derived dendritic cells and enhances their maturation, function, and antigen-specific T cell responses. J Immunol 2002, 168:197-206.
- [56]Micaroni M, Stanley AC, Khromykh T, Venturato J, Wong CX, Lim JP, et al.: Rab6a/a' are important Golgi regulators of pro-inflammatory TNF secretion in macrophages. PLoS One 2013, 8:e57034.
- [57]Mori R, Ikematsu K, Kitaguchi T, Kim SE, Okamoto M, Chiba T, et al.: Release of TNF-alpha from macrophages is mediated by small GTPase Rab37. Eur J Immunol 2011, 41:3230-9.
- [58]Bhattacharya M, Ojha N, Solanki S, Mukhopadhyay CK, Madan R, Patel N, et al.: IL-6 and IL-12 specifically regulate the expression of Rab5 and Rab7 via distinct signaling pathways. EMBO J 2006, 25:2878-88.
- [59]Clark SC: Interleukin-6. Multiple activities in regulation of the hematopoietic and immune systems. Ann N Y Acad Sci 1989, 557:438-43.
- [60]Nowacek AS, Miller RL, McMillan J, Kanmogne G, Kanmogne M, Mosley RL, et al.: NanoART synthesis, characterization, uptake, release and toxicology for human monocyte-macrophage drug delivery. Nanomedicine (Lond) 2009, 4:903-17.
- [61]Gendelman HE, Orenstein JM, Martin MA, Ferrua C, Mitra R, Phipps T, et al.: Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med 1988, 167:1428-41.
- [62]Wisniewski JR, Rakus D: Multi-enzyme digestion FASP and the 'Total Protein Approach'-based absolute quantification of the Escherichia coli proteome. J Proteomics 2014, 109C:322-31.
- [63]Drabik A, Bodzon-Kulakowska A, Suder P, Ciborowski P, Silberring J: iTRAQ analysis with Paul ion trap-obstacle solved. J Proteome Res 2013, 12:4607-11.
- [64]Peng H, Wu Y, Duan Z, Ciborowski P, Zheng JC: Proteolytic processing of SDF-1alpha by matrix metalloproteinase-2 impairs CXCR4 signaling and reduces neural progenitor cell migration. Protein Cell 2012, 3:875-82.
- [65]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4:44-57.
- [66]Raska M, Czernekova L, Moldoveanu Z, Zachova K, Elliott MC, Novak Z, et al.: Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Res Ther 2014, 11:23. BioMed Central Full Text
- [67]Edagwa BJ, Guo D, Puligujja P, Chen H, McMillan J, Liu X, et al. Long-acting antituberculous therapeutic nanoparticles target macrophage endosomes. FASEB J. 2014.
- [68]Cook EB, Stahl JL, Lowe L, Chen R, Morgan E, Wilson J, et al.: Simultaneous measurement of six cytokines in a single sample of human tears using microparticle-based flow cytometry: allergics vs. non-allergics. J Immunol Methods 2001, 254:109-18.