Radiation Oncology | |
3 Tesla multiparametric MRI for GTV-definition of Dominant Intraprostatic Lesions in patients with Prostate Cancer – an interobserver variability study | |
Cordula A Jilg3  Anca L Grosu1  Simon Kirste1  Stefan Knippen1  Jutta Scholber1  Karl Henne1  Natalja Volegova-Neher1  Christian Doll1  Tobias Fechter1  Ursula Nestle1  Hans Christian Rischke2  | |
[1] Department of Radiation Oncology, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg, Germany;Department of Nuclear Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany;Department of Urology, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany | |
关键词: Interobserver variability; 3 Tesla MRI; Simultaneous integrated boost; Focal dose escalation; Gross tumor volume; Prostate cancer; | |
Others : 1153331 DOI : 10.1186/1748-717X-8-183 |
|
received in 2013-02-21, accepted in 2013-07-20, 发布年份 2013 | |
【 摘 要 】
Purpose
To evaluate the interobserver variability of gross tumor volume (GTV) - delineation of Dominant Intraprostatic Lesions (DIPL) in patients with prostate cancer using published MRI criteria for multiparametric MRI at 3 Tesla by 6 different observers.
Material and methods
90 GTV-datasets based on 15 multiparametric MRI sequences (T2w, diffusion weighted (DWI) and dynamic contrast enhanced (DCE)) of 5 patients with prostate cancer were generated for GTV-delineation of DIPL by 6 observers. The reference GTV-dataset was contoured by a radiologist with expertise in diagnostic imaging of prostate cancer using MRI. Subsequent GTV-delineation was performed by 5 radiation oncologists who received teaching of MRI-features of primary prostate cancer before starting contouring session. GTV-datasets were contoured using Oncentra Masterplan® and iplan® Net. For purposes of comparison GTV-datasets were imported to the Artiview® platform (Aquilab®), GTV-values and the similarity indices or Kappa indices (KI) were calculated with the postulation that a KI > 0.7 indicates excellent, a KI > 0.6 to < 0.7 substantial and KI > 0.5 to < 0.6 moderate agreement. Additionally all observers rated difficulties of contouring for each MRI-sequence using a 3 point rating scale (1 = easy to delineate, 2 = minor difficulties, 3 = major difficulties).
Results
GTV contouring using T2w (KI-T2w = 0.61) and DCE images (KI-DCE = 0.63) resulted in substantial agreement. GTV contouring using DWI images resulted in moderate agreement (KI-DWI = 0.51). KI-T2w and KI-DCE was significantly higher than KI-DWI (p = 0.01 and p = 0.003). Degree of difficulty in contouring GTV was significantly lower using T2w and DCE compared to DWI-sequences (both p < 0.0001). Analysis of delineation differences revealed inadequate comparison of functional (DWI, DCE) to anatomical sequences (T2w) and lack of awareness of non-specific imaging findings as a source of erroneous delineation.
Conclusions
Using T2w and DCE sequences at 3 Tesla for GTV-definition of DIPL in prostate cancer patients by radiation oncologists with knowledge of MRI features results in substantial agreement compared to an experienced MRI-radiologist, but for radiotherapy purposes higher KI are desirable, strengthen the need for expert surveillance. DWI sequence for GTV delineation was considered as difficult in application.
【 授权许可】
2013 Rischke et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150407075733396.pdf | 1822KB | download | |
Figure 9. | 60KB | Image | download |
Figure 8. | 88KB | Image | download |
Figure 7. | 57KB | Image | download |
Figure 6. | 58KB | Image | download |
Figure 5. | 49KB | Image | download |
Figure 4. | 62KB | Image | download |
Figure 3. | 33KB | Image | download |
Figure 2. | 34KB | Image | download |
Figure 1. | 76KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Budaus L, Bolla M, Bossi A, Cozzarini C, Crook J, Widmark A, et al.: Functional outcomes and complications following radiation therapy for prostate cancer: a critical analysis of the literature. Eur Urol 2012, 61(1):112-127. PubMed PMID: 22001105
- [2]Zelefsky MJ, Levin EJ, Hunt M, Yamada Y, Shippy AM, Jackson A, et al.: Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2008, 70(4):1124-1129. PubMed PMID: 18313526
- [3]Al-Mamgani A, Heemsbergen WD, Peeters ST, Lebesque JV: Role of intensity-modulated radiotherapy in reducing toxicity in dose escalation for localized prostate cancer. Int J Radiat Oncol Biol Phys 2009, 73(3):685-691. PubMed PMID: 18718725
- [4]Cahlon O, Zelefsky MJ, Shippy A, Chan H, Fuks Z, Yamada Y, et al.: Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 2008, 71(2):330-337.
- [5]Bott SR, Ahmed HU, Hindley RG, Abdul-Rahman A, Freeman A, Emberton M: The index lesion and focal therapy: an analysis of the pathological characteristics of prostate cancer. BJU Int 2010, 106(11):1607-1611. PubMed PMID: 20553262
- [6]Karavitakis M, Ahmed HU, Abel PD, Hazell S, Winkler MH: Tumor focality in prostate cancer: implications for focal therapy. Nat Rev Clin Oncol 2011, 8(1):48-55. PubMed PMID: 21116296
- [7]Viani GA, Stefano EJ, Afonso SL: Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys 2009, 74(5):1405-1418. PubMed PMID: 19616743
- [8]Pinkawa M, Holy R, Piroth MD, Fischedick K, Schaar S, Szekely-Orban D, et al.: Consequential late effects after radiotherapy for prostate cancer - a prospective longitudinal quality of life study. Radiat Oncol 2010, 5:27. PubMed PMID: 20377874. PubMed Central PMCID: PMC2857853 BioMed Central Full Text
- [9]Cellini N, Morganti AG, Mattiucci GC, Valentini V, Leone M, Luzi S, et al.: Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys 2002, 53(3):595-599. PubMed PMID: 12062602
- [10]Pucar D, Hricak H, Shukla-Dave A, Kuroiwa K, Drobnjak M, Eastham J, et al.: Clinically significant prostate cancer local recurrence after radiation therapy occurs at the site of primary tumor: magnetic resonance imaging and step-section pathology evidence. Int J Radiat Oncol Biol Phys 2007, 69(1):62-69. PubMed PMID: 17707266
- [11]Niyazi M, Bartenstein P, Belka C, Ganswindt U: Choline PET based dose-painting in prostate cancer–modelling of dose effects. Radiat Oncol 2010, 5:23. PubMed PMID: 20298546. PubMed Central PMCID: PMC2848061 BioMed Central Full Text
- [12]Scheidler J, Hricak H, Vigneron DB, Yu KK, Sokolov DL, Huang LR, et al.: Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging–clinicopathologic study. Radiology 1999, 213(2):473-480. PubMed PMID: 10551229
- [13]Engelbrecht MR, Huisman HJ, Laheij RJ, Jager GJ, van Leenders GJ, van Hulsbergen-Van De Kaa CA, et al.: Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology 2003, 229(1):248-254. PubMed PMID: 12944607
- [14]Futterer JJ, Heijmink SW, Scheenen TW, Veltman J, Huisman HJ, Vos P, et al.: Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 2006, 241(2):449-458. PubMed PMID: 16966484
- [15]Graser A, Heuck A, Sommer B, Massmann J, Scheidler J, Reiser M, et al.: Per-sextant localization and staging of prostate cancer: correlation of imaging findings with whole-mount step section histopathology. AJR Am J Roentgenol 2007, 188(1):84-90. PubMed PMID: 17179349
- [16]Heijmink SW, Futterer JJ, Hambrock T, Takahashi S, Scheenen TW, Huisman HJ, et al.: Prostate cancer: body-array versus endorectal coil MR imaging at 3 T–comparison of image quality, localization, and staging performance. Radiology 2007, 244(1):184-195. PubMed PMID: 17495178
- [17]Haider MA, van der Kwast TH, Tanguay J, Evans AJ, Hashmi AT, Lockwood G, et al.: Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 2007, 189(2):323-328. PubMed PMID: 17646457
- [18]Mazaheri Y, Shukla-Dave A, Hricak H, Fine SW, Zhang J, Inurrigarro G, et al.: Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging–correlation with pathologic findings. Radiology 2008, 246(2):480-488. PubMed PMID: 18227542
- [19]Puech P, Potiron E, Lemaitre L, Leroy X, Haber GP, Crouzet S, et al.: Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology 2009, 74(5):1094-1099. PubMed PMID: 19773038
- [20]Riches SF, Payne GS, Morgan VA, Sandhu S, Fisher C, Germuska M, et al.: MRI in the detection of prostate cancer: combined apparent diffusion coefficient, metabolite ratio, and vascular parameters. AJR Am J Roentgenol 2009, 193(6):1583-1591. PubMed PMID: 19933651
- [21]Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL, et al.: Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology 2010, 255(1):89-99. PubMed PMID: 20308447. PubMed Central PMCID: PMC2843833
- [22]Turkbey B, Mani H, Aras O, Rastinehad AR, Shah V, Bernardo M, et al.: Correlation of magnetic resonance imaging tumor volume with histopathology. J Urol 2012, 188(4):1157-1163. PubMed PMID: 22901591
- [23]Akin O, Sala E, Moskowitz CS, Kuroiwa K, Ishill NM, Pucar D, et al.: Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 2006, 239(3):784-792. PubMed PMID: 16569788
- [24]Yakar D, Debats OA, Bomers JG, Schouten MG, Vos PC, van Lin E, et al.: Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer. J Magn Reson Imaging 2012, 35(1):20-31. PubMed PMID: 22174000
- [25]Sosna J, Pedrosa I, Dewolf WC, Mahallati H, Lenkinski RE, Rofsky NM: MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. Acad Radiol 2004, 11(8):857-862.
- [26]Rischke HC, Schafer AO, Nestle U, Volegova-Neher N, Henne K, Benz MR, et al.: Detection of local recurrent prostate cancer after radical prostatectomy in terms of salvage radiotherapy using dynamic contrast enhanced-MRI without Endorectal coil. Radiat Oncol 2012, 7(1):185. PubMed PMID: 23114282 BioMed Central Full Text
- [27]Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al.: ESUR prostate MR guidelines 2012. Eur Radiol 2012, 22(4):746-757. PubMed PMID: 22322308. PubMed Central PMCID: PMC3297750
- [28]Fonteyne V, Villeirs G, Speleers B, De Neve W, De Wagter C, Lumen N, et al.: Intensity-modulated radiotherapy as primary therapy for prostate cancer: report on acute toxicity after dose escalation with simultaneous integrated boost to intraprostatic lesion. Int J Radiat Oncol Biol Phys 2008, 72(3):799-807. PubMed PMID: 18407430
- [29]Singh AK, Guion P, Sears-Crouse N, Ullman K, Smith S, Albert PS, et al.: Simultaneous integrated boost of biopsy proven, MRI defined dominant intra-prostatic lesions to 95 Gray with IMRT: early results of a phase I NCI study. Radiat Oncol 2007, 2:36. PubMed PMID: 17877821. PubMed Central PMCID: PMC2075521 BioMed Central Full Text
- [30]van Lin EN, Futterer JJ, Heijmink SW, van der Vight LP, Hoffmann AL, van Kollenburg P, et al.: IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys 2006, 65(1):291-303. PubMed PMID: 16618584
- [31]Cruz M, Tsuda K, Narumi Y, Kuroiwa Y, Nose T, Kojima Y, et al.: Characterization of low-intensity lesions in the peripheral zone of prostate on pre-biopsy endorectal coil MR imaging. Eur Radiol 2002, 12(2):357-365. PubMed PMID: 11870434
- [32]Bonekamp D, Jacobs MA, El-Khouli R, Stoianovici D, Macura KJ: Advancements in MR imaging of the prostate: from diagnosis to interventions. Radiographics 2011, 31(3):677-703. PubMed PMID: 21571651.PubMed Central PMCID: PMC3093638
- [33]Fuchsjager M, Shukla-Dave A, Akin O, Barentsz J, Hricak H: Prostate cancer imaging. Acta Radiol 2008, 49(1):107-120. PubMed PMID: 18210320
- [34]Claus FG, Hricak H, Hattery RR: Pretreatment evaluation of prostate cancer: role of MR imaging and 1H MR spectroscopy. Radiographics 2004, 24(Suppl 1):S167-S180. PubMed PMID: 15486239
- [35]Hosseinzadeh K, Schwarz SD: Endorectal diffusion-weighted imaging in prostate cancer to differentiate malignant and benign peripheral zone tissue. J Magn Reson Imaging 2004, 20(4):654-661. PubMed PMID: 15390142
- [36]Tamada T, Sone T, Jo Y, Toshimitsu S, Yamashita T, Yamamoto A, et al.: Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging 2008, 28(3):720-726. PubMed PMID: 18777532
- [37]Rosenkrantz AB, Kopec M, Kong X, Melamed J, Dakwar G, Babb JS, et al.: Prostate cancer vs. post-biopsy hemorrhage: diagnosis with T2- and diffusion-weighted imaging. J Magn Reson Imaging 2010, 31(6):1387-1394.
- [38]Sciarra A, Panebianco V, Ciccariello M, Salciccia S, Lisi D, Osimani M, et al.: Magnetic resonance spectroscopic imaging (1H-MRSI) and dynamic contrast-enhanced magnetic resonance (DCE-MRI): pattern changes from inflammation to prostate cancer. Cancer Invest 2010, 28(4):424-432. PubMed PMID: 20073578
- [39]Futterer JJ, Engelbrecht MR, Huisman HJ, Jager GJ, Hulsbergen-van De Kaa CA, Witjes JA, et al.: Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology 2005, 237(2):541-549. PubMed PMID: 16244263
- [40]Alonzi R, Taylor NJ, Stirling JJ, d'Arcy JA, Collins DJ, Saunders MI, et al.: Reproducibility and correlation between quantitative and semiquantitative dynamic and intrinsic susceptibility-weighted MRI parameters in the benign and malignant human prostate. J Magn Reson Imaging 32(1):155-164. PubMed PMID: 20578023
- [41]Vach W: The dependence of Cohen's kappa on the prevalence does not matter. J Clin Epidemiol 2005, 58(7):655-661. PubMed PMID: 15939215
- [42]Zijdenbos AP, Dawant BM, Margolin RA, Palmer AC: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans Med Imaging 1994, 13(4):716-724. PubMed PMID: 18218550
- [43]Landis JR, Koch GG: An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977, 33(2):363-374. PubMed PMID: 884196
- [44]Pinkawa M, Piroth MD, Holy R, Klotz J, Djukic V, Corral NE, et al.: Dose-escalation using intensity-modulated radiotherapy for prostate cancer - evaluation of quality of life with and without (18)F-choline PET-CT detected simultaneous integrated boost. Radiat Oncol 2012, 7:14. PubMed PMID: 22289620; PubMed Central PMCID: PMC3299580 BioMed Central Full Text
- [45]Lips IM, van der Heide UA, Haustermans K, van Lin EN, Pos F, Franken SP, et al.: Single blind randomized phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial. Trials 2011, 12:255. PubMed PMID: 22141598. PubMed Central PMCID: PMC3286435 BioMed Central Full Text
- [46]Miao H, Fukatsu H, Ishigaki T: Prostate cancer detection with 3-T MRI: comparison of diffusion-weighted and T2-weighted imaging. Eur J Radiol 2007, 61(2):297-302. PubMed PMID: 17085002
- [47]Padhani AR, Gapinski CJ, Macvicar DA, Parker GJ, Suckling J, Revell PB, et al.: Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 2000, 55(2):99-109. PubMed PMID: 10657154
- [48]White S, Hricak H, Forstner R, Kurhanewicz J, Vigneron DB, Zaloudek CJ, et al.: Prostate cancer: effect of postbiopsy hemorrhage on interpretation of MR images. Radiology 1995, 195(2):385-390. PubMed PMID: 7724756
- [49]Groenendaal G, van den Berg CA, Korporaal JG, Philippens ME, Luijten PR, van Vulpen M, et al.: Simultaneous MRI diffusion and perfusion imaging for tumor delineation in prostate cancer patients. Radiother Oncol 2010, 95(2):185-190. PubMed PMID: 20231041
- [50]Chen M, Hricak H, Kalbhen CL, Kurhanewicz J, Vigneron DB, Weiss JM, et al.: Hormonal ablation of prostatic cancer: effects on prostate morphology, tumor detection, and staging by endorectal coil MR imaging. AJR Am J Roentgenol 1996, 166(5):1157-1163. PubMed PMID: 8615261
- [51]Jung JA, Coakley FV, Vigneron DB, Swanson MG, Qayyum A, Weinberg V, et al.: Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology 2004, 233(3):701-708. PubMed PMID: 15564406
- [52]Martin S, Rodrigues G, Patil N, Bauman G, D'Souza D, Sexton T, et al.: A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI. Int J Radiat Oncol Biol Phys 2013, 85(1):95-100. PubMed PMID: 22572076
- [53]Groenendaal G, Borren A, Moman MR, Monninkhof E, van Diest PJ, Philippens ME, et al.: Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. Int J Radiat Oncol Biol Phys 2012, 82(3):e537-e544. PubMed PMID: 22197085
- [54]Rasch C, Steenbakkers R, van Herk M: Target definition in prostate, head, and neck. Semin Radiat Oncol 2005, 15(3):136-145. PubMed PMID: 15983939
- [55]Khoo VS, Joon DL: New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 2006, 79 Spec No 1:S2-S15. PubMed PMID: 16980682
- [56]Moeckli R, Sozzi WJ, Mirimanoff RO, Ozsahin M, Zouhair A, Valley JF, et al.: Physical considerations on discrepancies in target volume delineation. Z Med Phys 2009, 19(4):224-235. PubMed PMID: 19962081
- [57]Nyholm T, Jonsson J, Soderstrom K, Bergstrom P, Carlberg A, Frykholm G, et al.: Variability in prostate and seminal vesicle delineations defined on magnetic resonance images, a multi-observer, -center and -sequence study. Radiat Oncol 2013, 8(1):126. PubMed PMID: 23706145 BioMed Central Full Text
- [58]Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al.: Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 2005, 46(10):1642-1649. PubMed PMID: 16204714
- [59]Picchio M, Giovannini E, Messa C: The role of PET/computed tomography scan in the management of prostate cancer. Curr Opin Urol 2011, 21(3):230-236. PubMed PMID: 21378572
- [60]Bundschuh RA, Wendl CM, Weirich G, Eiber M, Souvatzoglou M, Treiber U, et al.: Tumour volume delineation in prostate cancer assessed by [(11)C]choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging 2013, 40(6):824-831. PubMed PMID: 23389430
- [61]Ambrosini V, Fani M, Fanti S, Forrer F, Maecke HR: Radiopeptide imaging and therapy in Europe. J Nucl Med 2011, 52(Suppl 2):42S-55S. PubMed PMID: 22144555